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Abstract. The mathematical model of nonlinear oscillations of weightless string is
analyzed. To find an asymptotic solution of the problem, uniformly valid in a long interval
of time, an averaged system of integral differential equations has been constructed.
A method for constructing special approximations of its solutions is proposed.
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1 Introduction

The differential equationutt = c2
0uxx of the transverse oscillations of the absolutely

elastic weightless string is presented in nearly all handbooks of mathematical physics.
Here,u(x, t) is a string deviation in pointx at the time momentt, c0 =

√

T/ρ is sound
velocity in string material, depending on its tensionT and densityρ. However, this linear
differential equation turns into a mathematical model of free linear wave oscillations only
in the presence of a strongly simplified motion. It is possible to show [1] that with
rejecting the small gradient condition, i.e., when| θx| ≥ 1 (hereθ(x, t) is the angle of
the string element deviation from the equilibrium position), the equation of string element
motion will be as follows:

utt =
c2
0uxx

(1 + u2
x)3/2

. (1)

In the case when deviation from the equilibrium is negligible, i.e.,| θx| ≪ 1, the equation
of string motion (1) turns into the well known linear wave equation.
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In paper [2], the mathematical model of nonlinear oscillations of the absolutely elas-
tic weightless string and the equation of motion (1) were analyzed under two important
preconditions:

1. Suppose that the sound velocityc is a weakly periodical spatial function

c = c0(1 + ε1 cosωx), ε1 ≪ 1.

The weakly periodic function is included in sound velocity to consider the possible
weak inhomogeneities of the string material or tension.

2. Upon introducing one more small dimensionless parameterε2, let us employ the
expansion

1
√

(1 + (ε2 ux)2)3
= 1 −

3

2
ε2
2u

2
x +

15

8
ε4
2u

4
x + O

(

ε6
2

)

, ε2 ≪ 1.

Introduction of the small parameterε2 allows rejecting the requirement| θx| ≪ 1
and analyzing non-small deviations of the string from the equilibrium ux = O(1).

With the above preconditions and upon introducingt̃ = t/c0, equation (1) turns
into the following equation (̃t will be again marked ast):

utt − (1 + ε1 cosωx)2uxx

(

1 −
3

2
ε2
2u

2
x +

15

8
ε4
2u

4
x

)

= 0. (2)

2 The model of nonlinear string oscillations

It is important to emphasize, and we shall soon see it, that the classical wave equation is
obtained only in case the motion is highly simplified.

Let a strained string with fixed ends be able of freely oscillating in thex, y plane.
The linear density of the string material isρ = const, and the tension force moduleT is
a constant value.1

We shall consider the string to be massless. This means that its equilibrium position
coincides with thex axis, i.e., the effect of gravitation is neglected. More exactly, the
gravity force is mach more less than tension force. In the opposite case of heavy string,
gravitation should be considered. The equilibrium position of such string is a “chain line”
∼ cosh y.

Depending on the context, the weightlessness of the string may be expressed differ-
ently. For instance, when the spreading of elastic waves in gases is analyzed and when,
in direct approximation, the same wave equation is obtained, the negligible effect of
gravitation equals ignoring the barometric pressure. Thisprecondition is valid for rather
“thin” layers of gas. The massless flow in hydrodynamics corresponds to the situation
with a rather small Galilei number(Ga).

1Traditionally, tension force is marked asT (“tension”); we shall differentiate it from the oscillation time
which is marked also asT .
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Every pointx of the string, under the effect of an external stimulus, deviates from
the equilibrium:x → u(x, t), i.e., u(x, t) is an instantaneous deviation of the string in
point x at momentt. Let us single out a small fragmentdx of the string with the mass
ρ dx (Fig. 1). The string tension force at the ends of the fragmentis tangential, therefore
the string fragmentdx is pushed from the equilibrium by the transverse resultant of the
forces:

dFy = T sin (θ + dθ) − T sin θ ≃ T cos θ dθ. (3)

Fig. 1. Fragment of moving string and forces acting on it.

Applying the second law of Newton to a string fragment with the massρ dx, in the
y direction we shall obtain

ρ dxü = T cos θ dθ, (4)

or

∂2u

∂t2
=

T

ρ
cos θ

∂θ

∂x
. (5)

At this point, it should be noted that the moving string deviating from the equilib-
rium is considered to be absolutely elastic. This means thatthe tension forceT satisfies
Hook’s law of elasticity. In the opposite case of non-elastic deformations, plastic de-
formations of the string should be accounted for, and its oscillations will be much more
complicated.

Another property of the string, related to its deformation,is its non tensility: we
shall consider its length to be stable even when the string deviates from the equilibrium
and its deformation satisfies Hook’s law. This condition, which at first sight seems to
contradict the existence of elastic deformations, means that the string lengthl is an
invariant of motion. In this case, there is no contradiction, because the elasticity force
depends on the first and the length of the functional on the second degree of the string
gradient. Therefore, even under elastic deformations, thelength of the oscillating string
may be considered to be constant ifδl ≪ l.
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As follows from Fig. 1, let us benefit from

tan θ =
dy

dx
≡

∂u

∂x
(6)

i.e.,

cos θ =

[

1 +

(

∂u

∂x

)2]−1/2

(7)

and, differentiating by (6), we shall obtain that

∂θ

∂x
= (cos θ)2

∂2u

∂x2
. (8)

Upon substituting expressions (7) and (8) into equation (5), we obtain the equation
of motion (1) of a string fragment, wherec0 =

√

T/ρ is sound velocity in the string
material.

Let us note some of the main properties of the string equationof motion:

• first of all, we see that equation (1) is nonlinear, i.e., for its solution the principle
of superposition is invalid; from this, it follows that in the case of equation (1) the
known D’Alembert principle cannot be applied;

• the harmonic wavesu(x, t) = A cos(x±c0t+ϕ0) are not the solutions of nonlinear
equation (1);

• it is rather easy to show that equation (1) has no nontrivial travelling wave solutions;

• in case the deviations from the equilibrium are negligible,|ux| ≪ 1 the equation of
string motion turns into the well-known wave equation:utt = c2

0uxx.

The need for applied solutions of equation (1), on the one hand, and the lack of
information on the analytical solutions of this equation, on the other hand, urges the
applications of numerical methods.

3 State of problem

In paper [2], the averaged system of equation (2) was constructed without presenting its
solution. In the current work, we will analyze the non-resonance case of the problem,
whose analysis was studied in paper [3], and the resonance case which has never been
analyzed.

We shall analyze equation (2), assuming that the small parametersε1 andε2 have
the following correlation:

3

16β
· ε2

2 =
1

α
· ε1 = ε. (9)
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Note that our method works also when precondition (9) is not valid, i.e., when
ε2
2 ≪ ε1 or ε2

2 ≫ ε1. This only alleviates the asymptotic analysis of problem (2) because
in this case in equation (10) the number of terms of theO(ε) order diminishes.

Then, from (2) and (9), we get the equation

utt − uxx = ε
(

α cos(ωx)uxx − βu2
x

)

+ O
(

ε2
)

. (10)

Upon noting

r+ = ut + ux and r− = ut − ux,

we rewrite equation (10) into the following equivalent system through the Riemann in-
variants:

∂r±

∂t
∓

∂r±

∂x
= ±ε

(

∂r+

∂x
+

∂r−

∂x

)

·
(

α cosωx − β
(

r+ − r−
)2)

. (11)

The nonperturbated system (11), i.e., whenε = 0, describes two independent waves
r−0 (x + t) andr+

0 (x − t) moving in two different directions. Here,r±(x) are smoothly
differentiable functions describing the initial conditions of the problem (11). While trying
to construct the direct asymptotic approximation

r±(x, t; ε) = r0(x ± t) + εr±1 (x, t) + · · · , (12)

we shall encounter the problem of secular termsεt, characteristic of the asymptotic
analysis. For this reason, the asymptotics (12) will be valid only whenεt ≪ 1, i.e.,
in a short time intervalt ≪ ε−1.

The aim of the present work is the construction of asymptotics in the large domain

(t, x) ∈

[

0,
τ0

ε

]

× (−∞, +∞). (13)

Here,τ0 and all other constants are independent of the small parameterε.

4 Method of averaging

In order to construct the asymptotic solution of the system (11) uniformily valid in the
region (13), we must annul the secular termsεt in the explicit expansion. We apply
the principles of two scales and averaging along characteristics. For the details of the
averaging scheme, see [5] as well as [6, 7]. For the mathematical substantiation of the
method, see [4].

Let us note the slow time

τ = εt

and the fast characteristic variables

y± = x ± t.
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We shall look for the approximation of the asymptotic problem (11) in the form [4–7]:

r±(x, t; ε) ≈ R±
(

τ, y±
)

.

The functionsR± will be searched for by solving the following averaged system:

∂R±

∂τ
= ±

〈(

∂R+

∂y+
+

∂R−

∂y−

)

·
(

α cosωx − β
(

R+R−
)2)
〉

±

. (14)

The averaging operators〈· · · 〉± according to their characteristics are described as

〈

g
(

τ, x, y+, y−
)〉

+
≡ lim

S→+∞
S−1

S
∫

0

g
(

τ, y+ − s, y+, y+ − 2s
)

ds, (15)

〈

g
(

τ, x, y+, y−
)〉

−
≡ lim

S→+∞
S−1

S
∫

0

g
(

τ, y− + s, y− + 2s, y−
)

ds. (16)

From descriptions (15) and (16) there follow the propertiesof the averaging operators [4]:
〈

∂R±

∂y±

〉

∓

= 0,

〈

∂R±

∂y±
R±

〉

∓

= 0,

〈

∂R±

∂y±

(

R±
)2

〉

∓

= 0, (17)

〈

∂R∓

∂y∓
cosωx

〉

∓

= 0,

〈

∂R∓

∂y∓

(

R±
)2

〉

∓

=
∂R∓

∂y∓

〈

(

R±
)2

〉

∓

, (18)

which are valid for the functionsR±(τ, y) (τ0 is a positive constant) described in the
region

(τ, y) ∈ [0, τ0] × (−∞, +∞).

Let us substitute formulas (17) and (18) into system (14):

∂R±

∂τ
± β

(

R±
)2 ∂R±

∂y±
= ±α

〈

∂R∓

∂y∓
cosωx

〉

±

± β
∂R±

∂y∓

〈(

R∓
)2〉

±
. (19)

5 Averaging system

Suppose that system (11) has been complemented with the initial conditions

r+(x, 0) = r+

0 (x), r−(x, 0) = r−0 (x), x ∈ (−∞, +∞). (20)

The asymptotic solution is obtained by solving the averagedsystem (19), (20). In separate
cases,e.g. when the functionsr+ andr− disappear in the infinity,

lim
|x|→∞

r±(x) = 0, (21)
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system (19) is split into two independent equations of simple nonlinear waves:

∂R±

∂τ
± β

(

R±
)2 ∂R±

∂y±
= 0. (22)

Note that the obtained equation (22) may be transformed intothe classical Hopf
equation (also called the Riemann or Euler equation)wt + wwx = 0 by employing the
substitutionw(x, t) = β(R±(x, t))2.

More complicated is the periodical problem. If functions (20) are periodical with
the period2π andω is an integer, the averaging operators (15) and (16) may be substituted
by integrals in a finite interval, and the averaged system (19) is presented as

∂R+

∂τ
+ β ·

(

R+
)2 ∂R+

∂y+
=

α

2π

2π
∫

0

∂R−(τ, y+ − 2s)

∂y−
cos
(

ω
(

y+ − s
))

ds

−
∂R+

∂y+
·

β

2π

2π
∫

0

(

R−
)2(

τ, y+ − 2s
)

ds,

∂R−

∂τ
− β ·

(

R−
)2 ∂R−

∂y−
= −

α

2π

2π
∫

0

∂R+(τ, y− + 2s)

∂y+
cos
(

ω
(

y− + s
))

ds

+
∂R−

∂y−
·

β

2π

2π
∫

0

(

R+
)2(

τ, y− + 2s
)

ds.

(23)

Let us supplement system (23) with periodical initial conditions:

R±
(

τ, y±
)∣

∣

τ=0
= R±

0

(

y±
)

≡ R±
0

(

y± + 2π
)

. (24)

Hereα, β, ω are constant parameters,τ = εt is the slow time, andy± = x ∓ t are
the rapid characteristic variables. When the functionsR±

0 are smoothly differentiated,
there exists a positive constantτ0 which makes the problem (23), (24) to have only one
smoothly differentiated (as many times asR±

0 ) solutionR±(τ, y±) periodical according
to y± in the domain[0, τ0] × (−∞, +∞) [4].

Let us note that systems like (23), (24) appear while applying the method of av-
eraging in models of the resonance interaction of nonlinearwaves. In many cases such
systems are left unsolved as a separate problem for finding asymptotics [2,8–11]. In [5–7],
problems similar to (23), (24) were solved by numerical methods.

6 Approximation of solutions

The aim of the present part is to construct for the solution of(23) and (24) an approxima-
tion of the following form:

R±
N

(

τ, y±
)

= a±
0 (τ) +

N
∑

k=1

a±
k (τ) cos

(

ky±
)

+ b±k (τ) sin
(

ky±
)

. (25)
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Let us substitute (25) into system (23). We obtain a new system of differential
equations. We show a fragment of the Maple program, when terms are grouped to the
similar harmonicscos(ky±) andsin(ky±):

for k to n do a±k (τ ) := coeff(R±(τ , y±), cos(k·y±)) end do;

for k to n do b±k (τ ) := coeff(R±(τ , y±), sin(k·y±)) end do.

We will look for functionsa±
k (τ), b±k (τ), τ ∈ [0, τ0] in the form of M -degree

polynomials with undefined coefficients:

a±
k (τ) =

M
∑

i=0

a±
kiτ

i, b±k (τ) =

M
∑

i=1

b±kiτ
i. (26)

Upon substituting phenomena (25), (26) into the obtained system of equations, we shall
group the terms near similarτ degrees and note the relations to find the polynom coeffi-
cientsa±

k , b±k . The fragment of term grouping in the Maple program looks as follows:

for i to M do

for k to N do a±0i := subs(τ = 0, a±k ) end do;

for k to N do b±0i := subs(τ = 0, b±k ) end do;

for k to N do b±ki := coeff(collect((1/k)·b±k , [τ i]), τ i) end do;

for k to N do a±ki := coeff(collect((1/k)·a±k , [τ i]), τ i) end do;

end do.

7 Nonresonance case

Let us analyze a non-resonance case, i.e., when in system (23) valueω is not an integer.
Note that the same result will be obtained forα = 0:

∂R±

∂τ
± β ·

(

R±
)2 ∂R±

∂y+
= ∓

∂R±

∂y±
·

β

2π

2π
∫

0

(

R∓
)2(

τ, y± ∓ s
)

ds. (27)

We shall solve equation (27) when the periodical initial conditions

R±
(

τ, y±
)∣

∣

τ=0
= cos

(

y±
)

. (28)

Note that for functionR±(τ, y) (25), valid is the equality

1

2π

2π
∫

0

(

R∓
)2

(τ, y) dy = a2
0(τ) +

∞
∑

k=1

a2
k(τ) + b2

k(τ),
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i.e., the integrals of system (27) do not depend ony±. Let us multiply each of equations
(27) byR+ andR− respectively and integrate byy from 0 to 2π. We obtain:

∂

∂y±

(

1

2π

2π
∫

0

(

R∓
)2(

τ, y±∓s
)

ds

)

= 0. (29)

Thus, 1

2π

∫ 2π

0
(R∓)2(τ, y±∓s) dis = 1

2π

∫ 2π

0
(R∓)2(0, y±∓s) dis − const and the two

equations (27) are independent.
In this case, each solution of the problem (27), (28) may be presented in the form

of an inexplicit function:

R±
(

τ, y±
)

= cos
(

y± ∓ β
((

R±
)2

±
(

R∓
)2)

τ
)

. (30)

Let us note that (30) is the solution of the problem. The derivative of the function
R±(τ, y±) with respect toτ is

∂

∂τ
R±
(

τ, y±
)

= ±
sin(y± ∓ β((R±)2 + (R∓)2)τ)(β((R±)2 ± (R∓)2))

1 ∓ sin(y± ∓ β((R±)2 + (R∓)2)t)2βτR±
. (31)

The derivative byy of the functionsR±(τ, y±) is:

∂

∂y
R±
(

τ, y±
)

= −
sin(y± ∓ β((R±)2 + (R∓)2)τ)

1 ∓ sin(y± ∓ β((R±)2 + (R∓)2)τ)2βτR±
. (32)

Substitution (31) and (32) into equations (27) gives identities.
Let us extend the functionsR± by the Taylor formula. Upon denoting the partial

derivativesDjR of the j-order of the functionR by τ , we obtain

R±
(

τ, y±
)

=

M
∑

j=0

DjR
±(0, y±)

j!
τ j + O

(

τM+1
)

.

Upon calculatingDjR
± order derivatives, we write the formulas of the approximations:

R±
(

τ, y±
)

=

(

1 −
5

16
τ2 +

25

1024
τ4 −

251

245760
τ6

)

cos
(

y±
)

+

(

∓
3

4
τ ±

37

384
τ3 ∓

109

20480
τ5 ±

321

1835008
τ7

)

sin
(

y±
)

+

(

21

32
τ2 −

459

512
τ4 +

146043

327680
τ6

)

cos
(

3y±
)

+

(

±
1

4
τ ∓

117

128
τ3 ±

2835

4096
τ5 ∓

112671

458752
τ7

)

sin
(

3 y±
)

+

(

−
5

32
τ2 +

875

512
τ4 −

1068281

294912
τ6

)

cos
(

5 y±
)
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±

(

275

384
τ3 ∓

23125

8192
τ5 ±

3526125

917504
τ7

)

sin
(

5y±
)

+

(

∓
49

384
τ3 ±

171521

61440
τ5 ∓

2662093

245760
τ7

)

sin
(

7y±
)

+

(

−
1715

2048
τ4 +

18583901

2949120
τ6

)

cos
(

7y±
)

+ · · · .

In [3], a numerical investigation was reported. The numberN of harmonics in for-
mula (25) and the polynom degreeM in (26) varied. The obtained results were compared
with extensions of formulas (31) and (32). The effect of the number of harmonics and
the polynom degree on the functionR± extension coefficients was examined (N andM
were analyzed up to (11)).

In the table are presented results of numerical calculations, in which the function
R+ was found byMaple, as well as differences of approximation:RM,N − R+.

τ = 0.1 y = 0.1 y = 0.5 y = 1.0 y = 2.0 y = 3.14 y = 4.0 y = 4.5 y = 6.28

R+

Maple 0.9988 0.9350 0.6117 −0.3582 −0.9889 −0.7280 −0.2662 0.9886

R+

3,3 − R+ 0.0015 −0.0006 −0.0002 −0.0012 0.0012 0.0012 −0.0016 0.0012

R+

5,5 − R+ 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 −0.0001 0.0001

R+

7,7 − R+ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

τ = 0.2 y = 0.1 y = 0.5 y = 1.0 y = 2.0 y = 3.14 y = 4.0 y = 4.5 y = 6.28

R+

Maple 0.9813 0.9784 0.6941 −0.3056 −0.9593 −0.8096 −0.3277 0.9589

R+

3,3 − R+ 0.0038 −0.0008 −0.0029 −0.0069 0.0015 0.0060 −0.0074 0.0015

R+

5,5 − R+
−0.0003 0.0008 −0.0007 0.0001 0.0005 0.0013 −0.0011 −0.0005

R+

7,7 − R+ 0.0001 0.0002 −0.0002 0.0001 −0.0002 0.0002 −0.0001 0.0002

τ = 0.3 y = 0.1 y = 0.5 y = 1.0 y = 2.0 y = 3.14 y = 4.0 y = 4.5 y = 6.28

R+

Maple 0.9445 1.0009 0.7882 −0.2566 −0.9153 −0.8911 −0.3986 0.9148

R+

3,3 − R+ 0.0034 0.0057 −0.0102 −0.0167 0.0031 0.0101 −0.0175 −0.0032

R+

5,5 − R+ 0.0041 −0.0003 −0.0049 −0.0024 −0.0039 0.0037 −0.0059 0.0039

R+

7,7 − R+ 0.0038 −0.0011 −0.0026 0.0007 −0.0034 0.0004 −0.0017 0.0034

τ = 0.4 y = 0.1 y = 0.5 y = 1.0 y = 2.0 y = 3.14 y = 4.0 y = 4.5 y = 6.28

R+

Maple 0.8661 1.0212 0.8883 −0.2105 −0.8442 −0.9487 −0.4847 0.8441

R+

3,3 − R+ 0.0211 −0.0102 −0.0176 −0.0307 −0.0001 −0.0068 −0.0299 −0.0004

R+

5,5 − R+ 0.0516 −0.0288 −0.0162 −0.0148 −0.0415 −0.0003 −0.0190 0.0411

R+

7,7 − R+ 0.0339 −0.0178 −0.0157 −0.0004 −0.0215 −0.0063 −0.0104 0.0211

τ = 0.5 y = 0.1 y = 0.5 y = 1.0 y = 2.0 y = 3.14 y = 4.0 y = 4.5 y = 6.28

R+

Maple 0.6369 1.1317 0.9731 −0.1678 −0.6875 −0.9249 −0.5954 0.6894

R+

3,3 − R+ 0.1645 −0.1447 −0.0050 −0.0477 −0.0697 −0.0992 −0.0387 −0.0671

R+

5,5 − R+ 0.2784 −0.1790 −0.0318 −0.0500 −0.1925 −0.0420 −0.0459 0.1898

R+

7,7 − R+ 0.1682 −0.1048 −0.0609 −0.0171 −0.0856 −0.0501 −0.0397 0.0834
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Asymptotic solution of the mathematical model of nonlinearoscillations

The finding has been thatN = 7 andM = 7 are sufficient to ensure the graphical
precision. We will show how the graph of the functionR± approximations looks in the
case of non-resonance (i.e., whenω is not an integer) of different values at the slow time.

Fig. 2. Approximations ofR± for τ = 0 andτ = 0.2.

Fig. 3. Approximations ofR± for τ = 0.4 andτ = 0.6.

We see that with increasingτ0 the wave amplitude also increases. From equal-
ity (30) we see also that|R±| 6 1. Therefore the obtained formulas are applicable for
calculating the functionsR± only in cases ofτ ∈ [0, τ0] when this condition is satisfied.

Exactly whenτ ∈ [0, τ0], the problem has a classical continuous differential solu-
tion (see [4]). The approximation constructed in our work isapplicable whenτ ≤ τ0 ≤ τ0.
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The accuracy of this approximation (see the calculation table on p. 316) is inversely
proportional to the value ofτ0. In all cases,τ0 is a constant independent of the small
parameterε. Therefore, the proposed asymptotical solution is uniformly valid in the large
area(t, x) ∈ [0, τ0

ε ] × R.
In the case under analysis,τ0 ≈ 0.6.

8 Resonance case

Now, let us proceed to the case of resonance, i.e., when in system (23)ω is an integer. We
shall solve this system by constructing approximations (25) and (26) with the aid of the
software written in the Maple medium.

Let us investigate the case when the periodical initial conditions are

R+(τ, y)|τ=0 = sin
(

y+
)

, R−(τ, y)|τ=0 = 0. (33)

We expand functionsR±(τ, y±) to Fourier series and insert into our system. We
obtain:

∂a±
0 (τ)

∂τ
+

∂a±
1 (τ)

∂τ
cos
(

y±
)

+
∂b±1 (τ)

∂τ
sin
(

y±
)

+
∂a±

2 (τ)

∂τ
cos
(

2y±
)

+
∂b+

2 (τ)

∂τ
sin
(

2y±
)

+ · · ·

± β
(

a±
0 (τ) + a±

1 (τ) cos
(

y±
)

+ b±1 (τ) sin
(

y±
)

+ a±
2 (τ) cos

(

2y±
)

+ b±2 (τ) sin
(

2y±
)

+ · · ·
)2(

−a±
1 (τ) sin

(

y±
)

+ b±1 (τ) cos
(

y±
)

−2a±
2 (τ) sin

(

2y±
)

+2b±2 (τ) cos
(

2y±
)

+· · ·
)

±
α

2π

2π
∫

0

(

−a∓
1 (τ) cos

(

y± ∓ 2s
)

+ b∓1 sin
(

y± ∓ 2s
)

− 2a∓
2 cos

(

2y± ∓ 2s
)

+ 2b∓2 (τ) sin
(

2y± ∓ 2s
)

+ · · ·
)

cos
(

ω
(

y± ∓ s
))

ds

−
(

−a±
1 (τ) sin

(

y±
)

+ b±1 (τ) cos
(

y±
)

− 2a±
2 (τ) sin

(

2y±
)

+ 2b±2 (τ) cos
(

2y±
)

+ · · ·
)

×

(

±
β

2π

2π
∫

0

(

a∓
0 (τ) + a∓

1 (τ) cos
(

y± ∓ 2s
)

+ b∓1 (τ) sin
(

y± ∓ 2s
)

+ a∓
2 (τ) cos

(

2y± ∓ 2s
)

+ b∓2 (τ) sin
(

2y± ∓ 2s
)

+· · ·
)2

ds

)

.

We obtain a new scheme in which we put together terms with the same indexes and thus
obtain a system of ordinary differential equations. The formulas are rather cumbersome,
so we don’t show them, and the Maple program is used to find the coefficients.
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We show the results of calculation when in formula (25)M = 3, M = 5 and
M = 7:

Fig. 4. Graphs ofR±7,3, R±7,5, R±7,7 for τ = 0 andτ = 0.4.

Fig. 5. Graphs ofR±7,3, R±7,5, R±7,7 for τ = 0.7 andτ = 1.

From the above graphs we see also that to insure the graphicalaccuracy of calcula-
tionsN = 7 is sufficient. It is possible to show that the same holds also for the polynom
degreeM = 7.

Note that because of the resonance interaction of the waves,in the course of time
the waveR− appears, although at the time momentτ = 0, R− was a zero function. It
is notable also that in the non-resonance case the waveR− does not appear, i.e., at allτ
values we haveR− ≡ 0.

319



A. Krylovas, O. Lavcel-Budko, P. Miškinis

9 Profile of string

Let us show, by the method of asymptotic integration presented in this paper, the profile
variation dynamics of an absolutely elastic weightless string. Because we have formulas
for the Riemann invariants

r+ = ut + ux and r− = ut − ux,

we obtain that

ux =
r+ − r−

2
.

We return to the fast characteristic variables:

y− = x − t, y+ = x + t

and write the string profile equation

u =

∫

r+ − r−

2
dx + C.

We shall analyze string profile variation dynamics for non-resonance and resonance
cases whenN = 7, M = 7 andβ = 0.35, ω = 1, α = 3.0. At the initial moment of time,
we have the Riemann invariantsr+(0, x) = sin x, r−(0, x) = 0, and the corresponding
string profile isu(0, x) = 1

2
sinx. We show approximation graphs of the functions

u(t, x; ε), r+(t, x; ε), r−(t, x; ε) whenε = 0.01 andt varies from10 to 100 (t values
are indicated).

The left side shows the functions in the non-resonance case.Note that the waver−

in this case does not appear, i.e.,r− ≡ 0. On the right side, the same functions are shown
for the case of resonance.

Fig. 6. Profiles of string in non-resonance and resonance cases fort = 10.
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Fig. 7. Profiles of string in non-resonance and resonance cases fort = 30.

Fig. 8. Profiles of string in non-resonance and resonance cases fort = 50.

Fig. 9. Profiles of string in non-resonance and resonance cases fort = 70.
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Fig. 10. Profiles of string in non-resonance and resonance cases fort = 100.

10 Conclusions

Thus, the obtained results are as follows.
An integral differential system of averaged equations has been constructed for mod-

elling nonlinear oscillations of the absolutely elastic weightless string. To solve this
system, the Maple software has been compiled, which allows constructing the solution
approximations of a special form.

In the non-resonance case, an exact solution is possible, and this allowed testing the
program. The accuracy of the approximation under construction depends on the number
of harmonics and the degree of the polynoms that approximatethe extension. The effect
of these parameters is analyzed by numerical experiments.

The calculations presented in the paper deal with the non-resonance case. In future,
we intend to carry out a theoretical investigation and to establish whether the approxima-
tion error of calculations presented in the paper depends onthe parametersτ0, M, N .

For the resonance case, calculations of similar problems have been presented in
[5–7], where finite difference schemes were proposed. It would be interesting to compare
the results obtained by this method with numerical simulations.

Calculations have been performed to show string profile variations in a long time
interval for the resonance and non-resonance cases.

Interestingly, the obtained asymptotic formulas, e.g. (23), allow recalculating the
values of functions for other values ofε andt. For example, the same graphs will be ob-
tained whenε = 0.001 and the corresponding values oft will be t = 100,
t = 300, . . . , t = 1000 or ε = 0.0001 andt = 1000, t = 3000, . . . , t = 10000.
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