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A procedure for estimating potential damage to buildings induced by accidental explosions on railway is 
developed. By the damage are meant failures of nearby structures due to actions generated by the accidental 
explosions. This damage is measured in terms of probabilities of potential failures caused by the explosions. The 
estimation of the damage probabilities is based on a stochastic simulation of railway accident involving an 
explosion. The proposed simulation-based procedure quantifies epistemic (state-of-knowledge) uncertainties in 
the damage probabilities. These uncertainties are expressed in terms of Bayesian prior and posterior 
distributions. A foundation of the procedure is a computer intensive method known as a Bayesian bootstrap. It is 
used for approximating the posterior distributions of damage probabilities. An application of the Bayesian 
bootstrap makes the proposed procedure highly automatic and convenient for assessing structures subjected to 
the hazard of the accidental actions. In addition, it can be used for specifying safe distances between the railway 
and nearby buildings. Structures of these buildings can be designed for tolerable probabilities of failures induced 
by the accidental explosions. 
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1. INTRODUCTION 
 

Accidental explosions (AEs) on railway are dangerous, generally large-scale phenomena. 
Accidents involving such phenomena include severe damage to buildings and non-structural property. 
A selection of such accidents on railway is described in the books [1, 2]. Industrial activities require a 
rail transportation of explosives and such combustible materials as liquefied gases. They constitute an 
inevitable potentiality of AEs. Typical AEs are bursting of explosives and physical phenomena called 
the unconfined vapour cloud explosions (UVCEs) and boiling liquid expanding vapour explosions 
(BLEVEs). On the other hand, AEs on railway is generally rare, unexpected, and difficult-to-predict 
phenomena. Actions induced by AEs are uncertain and so is the potential mechanical damage form 
AEs. Predicting this damage requires a proper dealing with uncertainties related to both blast loading 
from AEs and response of structures to the AEs. In addition, general knowledge and statistical data on 
AEs are usually limited. The presence of considerable uncertainties generates a need to apply 
probabilistic methods to assessing the damage from AEs. 

This paper develops a procedure for estimating potential damage to buildings induced by 
accidental explosions on railway. By the damage are meant failures of nearby structures caused by 
actions generated by the AEs. This damage is measured in terms of probabilities of potential failures 
caused by AEs. The estimation of the damage probabilities is based on a stochastic simulation of 
railway accident involving an explosion. The proposed simulation-based procedure quantifies 
epistemic (state-of-knowledge) uncertainties in the damage probabilities. These uncertainties are 
expressed in terms of Bayesian prior and posterior distributions. A foundation of the procedure is a 
computer intensive method known as a Bayesian bootstrap. It is used for approximating the posterior 
distributions of damage probabilities. An application of the Bayesian bootstrap makes the proposed 
procedure highly automatic and convenient for assessing structures subjected to the hazard of the 
accidental actions. In addition, it can be used for specifying safe distances between the railway and 
nearby buildings. Structures of these buildings can be designed for tolerable probabilities of failures 
induced by AEs. 
 



Proceedings of the 5th International Conference RelStat’05 Part 1 

 35

2. METHODOLOGICAL BACKGROUND 
 

The prediction of potential damage to structures from rare AEs on railway can be formulated as 
a problem of statistical inference. As long as the damage probability serves as a damage measure, its 
estimation amounts to a statistical estimation of a mean value. However, this estimation is far from 
trivial. Limited knowledge and uncertainties related to AEs render an application of classical statistics 
of impossible. A natural approach is applying methods of Bayesian statistical theory. They do not 
break down in the situation of the limited knowledge about AEs. The damage probabilities can be 
estimated by combining Bayesian inference with methods of structural reliability analysis (SRA). 
Such a combination is well known in the field of SRA. Nevertheless, the author’s experience suggests 
that standard techniques of Bayesian updating are not fully suited to the estimation of damage 
probabilities. These techniques are too general to take account of specificity of predicting AEs and 
damage from them. 

Standard Bayesian updating can be enhanced by a computer intensive method of applied 
statistics known as “bootstrap” [3]. There is a Bayesian form of the bootstrap or the Bayesian 
bootstrap. Rubin introduced the latter term in 1981 [4], and he was the first, who found the connection 
of the bootstrap with Bayesian inference. Bayesian bootstrap is a specialized application of the 
bootstrap intended for simulating the posterior distribution of a parameter [3]. The Bayesian form of 
the bootstrap offers the scope for its application to a quantitative risk assessment (QRA), as methods 
of QRA are substantially based on the Bayesian statistical theory. 

QRAs often deal with large-scale accidents that may include AEs. Mechanical actions imposed 
on structures by AEs are called in terms of structural engineering the explosive actions (e.g., [5]). 
Estimating probabilities of foreseeable damage events can assess a potential damage to structures due 
to AEs. Formally, these probabilities can be handled by means of the bootstrap within the pure 
frequenters framework [6]. However, QRA provides consistent means for dealing with considerable 
uncertainties related to AEs and, sometimes, response of structures to AEs. The QRA means allow 
quantifying epistemic uncertainties in probabilities of the events in question in the form of prior and 
posterior distributions (e.g., [7]). The Bayesian bootstrap is suitable to utilizing attractive features of 
data resampling techniques. It allows applying these techniques to effective Bayesian updating within 
a QRA that considers AEs and potential damage from them. In particular, the Bayesian bootstrap can 
be applied to approximating posterior distributions of damage probabilities. 

The present paper considers a practical application of the Bayesian bootstrap to a QRA focused 
on assessing damage to structures. It is used for Bayesian inference based on two sources of 
information: 

• prior knowledge existing mainly in the form of mathematical models and historical data 
suitable to an approximate prediction of AE characteristics and 

• new information consisting of a small-size sample of measurements of AE characteristics 
which are highly relevant to an exposure situation (a situation in vicinity of railway where 
the structure under investigation stands and a potential AE can occur). 

The application of the Bayesian approach falls within the general approach to QRA known as 
classical Bayesian approach [7]. It is shown how to utilize the prior knowledge to specifying a prior 
distribution of a damage probability. Then it is demonstrated how to approximate its posterior 
distribution by means of the Bayesian bootstrap when the new sample of AE characteristics becomes 
available. 
 
3. PROBABILITY OF EXPLOSIVE DAMAGE 
 

Damage to a structure from an AE can be represented by a finite set of nd random events  
Di (i = 1, 2, … , nd), each standing for a foreseeable and specific mechanical damage phenomenon. If 
the damage is assessed in the context of QRA, probabilities of Dis can be grouped together to establish 
a risk profile related to a particular AE and a specific exposure situation. 

The probability of the damage Di due to an AE can be expressed in the form 
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where Di is the random event of damage; EA is the random event of imposition of AE with any 
characteristics; Y is the random vector of AE characteristics; y and FY(y) are the value of Y and its 
distribution function (d.f.), respectively. 

The definition (1) is based of the fragility function )|( yiDP  relating particular value of AE 
characteristics, y, to probability of the damage event Di. Fragility function is an often-used tool for 
describing response of structures to extreme actions (e.g., [8]). 

The fragility function can be expressed as some function pi(·) which relates probability of Di to y 
and thus takes on probability values, namely, )|()( yy ii DPp = . This function allows introducing a 

random variable P~  defined as a function of the random vector Y, namely, )|()( YY~
ii DPpP == . A 

mean value of P~  can be denoted by µ and expressed as ))|(()( Y~
iDPEPE ==µ  

The problem is that the d.f. )( yYF  is not known due to scarcity or irrelevance of information on 
characteristics of many types of AEs. However, distribution of values of Y can be approximately 
predicted by existing models and, in addition, data related to Y can be collected by carrying out 
experiments which are highly relevant to the exposure situation under investigation. 
 
4. KNOWLEDGE AVAILABLE FOR ESTIMATING DAMAGE PROBABILITY 
 

The expression )(PE ~
=µ  implies that the damage probability can be expressed as uncertain 

distribution parameter  µ amenable to Bayesian inference. The learning process involved in Bayesian 
inference is one of modifying the analyst’s initial probability statements about distribution parameters 
prior to observing data to posterior knowledge incorporating both prior knowledge and the data at 
hand. In a pure Bayesian analysis, the prior distribution of µ should be specified subjectively. 
However, the purely subjective specification does not utilize prior knowledge about many types of 
AEs. Such knowledge, more or less relevant to the exposure situation under investigation, is usually 
available for the analyst. Therefore one can make a compromise between the frequenters and Bayesian 
statistical analysis and specify priors for damage probabilities from the prior knowledge. 

Formal means for specifying priors based on data are provided by empirical Bayes methods [9]. 
This paper proposes a simple heuristic approach to specifying priors from existing knowledge. The 
approach is based on knowledge which is highly specific to a particular AE and is expressed in the 
form of a mathematical model ϕ(·) relating characteristics of exposure situation to characteristics of 
AE, namely, y = ϕ(x | ψ) where x is the vector describing characteristics of exposure situation in 
which an AE can occur; ψ is the vector used to express epistemic uncertainties in those parameters of 
ϕ(·) which are uncertain in epistemic sense. The exposure situation represented by x may be uncertain 
in the stochastic sense and a random vector X with an aleatory d.f can model this. FX(x). A part of 
prior knowledge should be represented by the fragility function pi(y) which can be established for an 
exposed structure by methods of the structural reliability analysis (e.g., [10]). Thus the fragility 
function pi(·) together with the model ϕ(·) form the main part of the prior knowledge. 

The need to apply Bayesian inference to estimating the damage probability )|( AEDP i  may 
stem mainly from a partial irrelevance of the prior knowledge to a particular exposure situation. The 
configuration of a structure exposed to an AE as well as the accident capable of inducing the AE may 
be unique by a large margin and so may not fit in the prior knowledge. The source of the partial 
irrelevance may lie in (i) the structure of the model ϕ(·) and/or (ii) data used to fit the d.f. FX(x) and 
estimate parameters of ϕ(·), that is, components of ψ. 

The partial irrelevance may require a correction of AE prediction by experimental data that can 
be considered highly relevant to an exposure situation under investigation. Clearly, these experiments 
can be used for improving the model ϕ(·) by, say, increasing its relevance to the exposure situation. 
However, the highly relevant (case-specific) data on AE characteristics y and, possibly, interaction of 
AE with the exposed structure can be used directly to estimating )|( AEDP i . 
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In theory, an amount of the case-specific data may be such that the model ϕ(·) will no longer be 
needed. In practice, however, the amount of the data may be limited because experiments on AEs, 
especially full-scale ones, are often expensive. This may require combining the new, case-specific data 
with the prior knowledge behind ϕ(·). 

The case-specific data necessary for estimating )|( AEDP i  should be gathered and represented 

in the form of a sample T
n ),...,,( 21 yyy ′′′=′y  containing experimental observations of the AE 

characteristics. Clearly, each experiment in a series yielding the sample y′  should imitate a potential 
accident and the sample y′  itself should posses the property called by statisticians the 
“representativeness” (e.g., [11]). Although this property of y′  is very important, a detailed discussion 
about how to ensure the representativeness is out of the scope of this paper. In subsequent discussion, 
it is assumed that the sample y′  possesses this property. 

Given the sample y′  and a fragility function of interest, pi(y), one can simplify estimating 
)|( AEDP i  by introducing a fictitious sample p = (p1, p2, … , pn)T, each component of which is 

calculated by ),...,2,1(   )|()( njDPpp jijij =′=′= yy . In this way the problem of estimating 
)|( AEDP i  is made less complicated by switching from a multi-dimensional analysis to a one-

dimensional case. Then the components pj of p can be treated as realizations of the random variable P~ . 
Expensiveness of experiments on AEs may cause that the size n of the sample y′  will be too 

small to apply methods of classical statistics for estimating )|( AEDP i . In addition, experiments on an 
AE may be unique and a series of them resulting in y′  may be carried only once. This implies that the 
procedure of Bayesian updating using y′  will be a single act, rather than a more or less constant 
process. 
 
5. USE OF BAYESIAN BOOTSTRAP 
 

Epistemic uncertainties related to parameters ψ of the model ϕ(x | ψ) can be expressed by 
introducing a random vector Ψ with a d.f. FΨ(ψ). Then ϕ(x | ψ) by a random function ϕ(X | Ψ) will 
yield another random variable 

 
( ) )(d))|(|())|(()(
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x
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where m(·) denotes some function relating M~  to Ψ. A value µ of M~  is the damage probability at 
givenψ, namely, ( )))|(|( ψXX ϕiDPE . A density of M~  denoted, say, by π(µ) can be used as prior 
quantifying epistemic uncertainty in damage probability )|( AEDP i  (Fig. 1). 
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Figure 1. Schematic representation of densities related to probabilistic damage assessment in Bayesian context: 
)|( ψ~ pf P  = density of the random variable ))|(( ψx~ ϕipP =  with the mean µψ; π(p) = prior distribution of µ; 

)|( np µπ ˆ  = posterior distribution of µ 



Transport and Telecommunication  Vol.7, No 1, 2006 

 38

The source of the epistemic uncertainty do not necessarily may be only on the side of the model 
ϕ(x | ψ) used to predicting AE characteristics. Epistemic uncertainty can also be related to values of 
the fragility function pi(y) at given y. However, this part of epistemic uncertainty can be handled in the 
framework of (2) and is leaved out for brevity. 

The usual Bayesian posterior has the form π(µ | data) ∝ π(µ) L(data | µ) where “data” is 
represented eventually by the samples p or y′ . The main idea followed in paper is to replace the usual 

Bayesian posterior π(µ | data) by an estimated posterior )|(data)(data)|( µµπµπ BL̂ˆ ∝  where 

)|(data µBL̂  is an estimate of the likelihood function based on bootstrap estimation of the density of 

the pivotal quantity Mn
~ˆ −µ  with ∑ =

−= n
j jn pn 1

1µ̂ . Boos and Monahan [12] suggested a possibility of 

such a replacement. 
The first step is to estimate the distribution function of the data p using the empirical d.f. nF̂  of 

the pj’s. In the second step, a set of B random samples of size n from nF̂  is generated and a mean bnµ′ˆ  
is calculated for each sample b (b = 1, 2, … , B). From the B simulated estimates 1nµ′ˆ , 2nµ′ˆ , … , Bnµ′ˆ , 
one can compute a kernel density estimate. 
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where w is a bandwidth (window width, smoothing parameter) and κ(·) is a kernel function. Since the 
function )( µ−ukB

ˆ  is an estimate of the sampling density of nµ̂  given µ, the likelihood function of nµ̂  
can be estimated by 
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The resulting estimate of posterior of the damage probability is 
 

)|()()()|( µµµπµµµπ nBnn LC ˆˆˆˆˆ = , 

 

where the normalizing constant )( nC µ̂  can be found by numerical integration. 
Practical implementation of the bootstrap-based updating procedure is relatively simple, as the 

estimates )|( µµnBL ˆˆ  and )|( nµµπ ˆˆ  can be computed almost automatically. The estimate )|( µµnBL ˆˆ  
is relatively insensitive to the choice of the kernel function κ(·) [3]. The only implementation problem 
is associated with the choice of the bandwidth w that can have considerable influence on )|( µµnBL ˆˆ . 
Shao and Tu [3] provide a review of approaches to choosing w. 
 
6. EXAMPLE: ASSESSING EXPLOSIVE DAMAGE TO INDUSTRIAL BUILDING 
 
6.1. Exposure Situation 
 

Consider an industrial building to be constructed in vicinity of a 500 m section of railway 
(Fig. 2). This transportation facility is used to carry commercial explosives that can detonate in 
consequence of a railway accident. The accidental explosion will generate a shock front resulting in an 
impulsive loading imposed on the building. Characteristics of this loading can be described by the 
vector y = (y1, y2)T, where y1 (MPa) and y2 (MPa s/m2) are the peak positive overpressure and positive 
impulse of the incident shock front, respectively. 
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Figure 2. Exposure situation involving accident with accidental explosion on railway 
 

The damage to building is represented by the random event Di consisting in a flexural failure or 
a shear failure of reinforced concrete panels to be used for external envelope of the building. These 
panels should resist not only wind pressure but also the pressure arising from a reflection of the shock 
front by the façade of the future building. 

The exposure situation is represented by the vector x = (x1, x2, x3)T, where is x1 (kg) is the 
weight of transported explosives (charge weight); x2 (m) and x3 (m) are the coordinates of the 
centre of accidental explosion in the coordinate system shown in Fig. 2. Thus the expression  
r = ( 2

2x  + (360 – x3)2)1/2 is the standoff of the explosion to the façade and the expression 11/3
1

−= rxs  is 
the so-called inverse scaled distance (kg1/3/m) (inverse normalized standoff, e.g. [1]). 
 
6.2. Prior knowledge 
 

The model ( ))|( ),|()|( 21 ψψψ xxxy ϕϕϕ ==  represents the prior knowledge with the model 
components 
 

)()|( 3
3

2
21111 sssy ψψψψϕ ′+′++′== ψx , (3) 

 
12/3

14222 )|( −′== rxy ψψϕ ψx  (4) 
 
and the vector of regression parameters 
 

TT ))kgs/(mMPa 6,3/kg;mMPa 1,4 ;/kgmMPa ;0,43m/kgMPa (0,1),,,( 2/332/321/3
4321 ××××=′′′′ ψψψψ  

 
Components of the vector T),( 21 ψψ=ψ  are dimensionless adjustment factors (relative 

overpressure and relative impulse of the commercial explosive, which can detonate in consequence of 
the railway accident, compared to an equivalent weight of TNT explosive). 

Stochastic uncertainty related to the exposure situation and so arguments of the model ϕ(x | ψ) 
are expressed by a random vector X = (X1, X2, X3)T with components distributed as follows 
X1 ~ N(500 kg, 30 kg), X2 ~ U(0 m, 160 m), X3 ~ U(0 m, 500 m), where L and U denote the normal 
distribution and the uniform distribution, respectively. The uniform distribution of X2 and X3 implies 
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that the accidental explosion can occur with the same probability within the 500 m ×160 m area of the 
railway. The uniform distribution of the explosion point coordinates X2 and X3 is considered only the 
first approximation to forecasting the position of explosion centre. 

Epistemic uncertainty can be introduced into the model ϕ(x | ψ) by assuming components ψ1 
and ψ2 of ψ to be random variables. The adjustment factors ψ1 and ψ2 are conventionally expressed as 
fixed values or deterministic function of the so-called scaled distance [1]. However, the nature of 
explosive actions is highly random and adjustment factors may be expressed in the form of random 
variables Ψ1 and Ψ2 having epistemic distributions. In this example, a lognormal distribution is 
assumed for the random adjustment factors: Ψ1 ~L(0,15842; 0,09975) with the mode of 1,16; 
Ψ2 ~L(0,17551; 0,09975) with the mode of 1.18. 

Further part of prior knowledge is represented by the fragility function pi(·) which relates the 
peak positive overpressure y1 and the positive impulse y2 to failure probability )|( yiDP . The form of 
pi(y) can be established using results obtained by Low & Hao [13], who investigated the reliability of 
RC slabs under impulsive loads. The function pi(y) is represented in the form 

)),(),,,(|()( 21121 yyyxxDPp ii ϕϕ ′′′=y  where (.)ϕ′  and (.)ϕ ′′  are two deterministic functions which 
relate the peak overpressure and impulse of reflected shock front to the respective characteristics of 
the incident shock front. The function (.)ϕ′  is called the “reflected pressure factor versus angle of 
incidence” and is usually represented in the graphical form [14]. The angle of incidence of the shock 
front can be simply determined from the explosion point coordinates x2 and x3. The function (.)ϕ ′′  is a 
simple formula allowing estimating reflected impulse from the incident impulse y2 [1]. 

In this example, the fragility function pi(y) is approximated by a d.f. 
),,,,|,( 212121 ρσσµµ PPPPzzF  of a bivariate normal distribution, namely, 

 
),,,,|,(),( 21212121 ρσσµµ PPPPi zzFzzp = , (5) 

 

where the arguments z1 and z2 are defined as ),,( 1211 yxxz ϕ′=  and ),( 212 yyz ϕ ′′=  and the parameters 
µP1 =3,2×10–3 MPa, µP2 =1,45 MPa×s/m2, σP1 =0,64×10–3 MPa, σP2 = 0,29 MPa×s/m2, ρ = 0,2. 

Clearly, the analyst may have uncertainties in epistemic sense related to elements of the model 
pi(y) as well as further elements of the model ϕ(x | ψ), first and foremost, the vector of the regression 
parameters, T),,,( 4321 ψψψψ ′′′′ ; however, these uncertainties are ignored in the present example for 
simplicity. 

The formulas (3) and (4) are standard relations obtained by experiments on TNT. They are, 
strictly speaking, valid only for a distant explosion of a charge positioned on the ground that forms a 
horizontal plane. In addition, the model represented by (3) and (4) assumes that the shock front 
generated by a TNT explosion does not encounter any obstacles. A gentle slope of the ground between 
the railway and the exposed future building makes the model ϕ(x | ψ) only partially relevant to the 
exposure situation shown in Fig. 2. In addition, the assumption of the uniform distribution of the 
explosion point coordinates X2 and X3 may be considered sound; however, a detailed analysis of 
railway traffic by means of QRA may introduce corrections in this assumption. 

Despite the irrelevance of the model represented by (3) and (4), it can be used for specifying a 
prior distribution of )|( AADP i . 
 
6.3. Specifying Prior from Existing Knowledge 
 

Propagating epistemic uncertainty related to the parameters ψ1 and ψ2 can specify the prior 
distribution of the damage probability )|( AEDP i . Thus uncertainty can be transformed into 

uncertainty in )|( AEDP i  by (2). The density π(µ) of the random variable M~  defined by (2) will 
serve as the prior distribution. 

The density π(µ) can be specified by fitting it to the sample µk (k = 1, 2, … , nk), the elements of 
which are estimates of the mean values )))|((( kipE ψϕ XX  for given ψk. The values ψk is generated 
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from the epistemic d.f. FΨ(ψ) by means of stochastic (Monte Carlo) simulation. The mean values EX(·) 
can also be estimated by simulation, namely, by ∑ =

−= en
l kliek pn 1

1 ))|(( ψϕµ x  where xl is the value of 
X generated from the aleatory d.f. FX(x). Fig. 3 shows a density of normal distribution fitted to the 
generated sample µk (k = 1, 2, … , 1000) obtained using ne = 1×105. Consequently, the prior density 
π(µ) is specified as a density of a normal distribution N(0,353; 0,09196) with a 90 % confidence 
interval ]0,202; 0,504[. 
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Figure 3. Histogram of the sample µk (k = 1, 2, … , 1000) and a transformed density of a normal distribution 
N(0.353, 0.09196) fitted to the sample 

 
6.4. New Data on Possible Railway Accident 
 

The new data may be obtained by an experiment that imitates potential accidents on the railway 
section. A detailed analysis of traffic in the railway section can yield, say, ten potential centres of 
accidental explosion (Fig. 2). Then a series of ten explosions can be carried out by detonating charges 
x1 of the explosive under investigation in a blast measuring facility that imitates the ground surface of 
the exposure situation. The weight of charges, x1, can be chosen by chance from the distribution of X1. 

The series of experiments will yield a sample T),...,,( 1021 yyy ′′′=′y . Let us say that ten pairs of 
measured overpressures and impulses given in Table 1 represent results of the experiment. 
 
Table 1. Observed elements iy′  of the sample y′  and computed elements pj of the sample p 

j 1 2 3 4 5 
iy′  (MPa, MPa×s/m2) (2,06; 0,960) (2,99; 1,38) (2,68; 1,26) (2,73; 1,27) (3,41; 1,59) 

pj 0,001674 0,1484 0,05482 0,06283 0,4286 
j 6 7 8 9 10 

iy′  (MPa, MPa×s/m2) (2,66; 1,23) (2,74; 1,24) (3,29; 1,46) (2,92; 1,30) (3,82; 1,74) 
pj 0,04543 0,0545 0,2861 0,09814 0,7022 

 
A small size of the sample y′  is likely, as the experiment imitating the accident may be expected to be 
expensive and time consuming. Clearly, the ten-element sample y′  is too small to estimate the 
damage probability )|( AEDP i  using y′  alone, that is, without prior knowledge. However, this 
sample may be used to update the prior distribution N(0,353; 0,09196) of )|( AEDP i  specified on the 
basis of prior knowledge. To do this, the fragility function (5) should be applied to transform y′  into 
the fictitious sample p given in Table 1. 
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The mean 10µ̂  of the sample p is equal to 0,1882. The sample p can be applied to estimating the 
likelihood function )|( 10 µµ̂L  and approximating posterior distribution of )|( AEDP i . 

6.5. Posterior Distribution as an Epistemic Estimate of Damage Probability 
 

The estimate of the likelihood function, )|( 10 µµ̂ˆ
BL , was obtained using the Gaussian kernel 

function κ(·). The number of bootstrap replications, B, necessary to generate the sample ( 1nµ′ˆ , 2nµ′ˆ , … , 

Bnµ′ˆ ) was taken to be equal to 1000. The choice of B was based on the rules of thumb suggested in [3]. 
The choice of the bandwidth w was not investigated in detail. Three values 0,01, 0,02, and 0,03 

of w were chosen manually to assess the influence of w on the posterior density )|( nµµπ ˆˆ . As 
expected, the largest value of w produced the smoothest estimate of the likelihood function. Fig. 4a 
shows a graph of )|( 10 µµ̂ˆ

BL  at w = 0.03. 
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(a)  (b)  

Figure 4. Graphs of the functions related to updating via Bayesian bootstrap: (a) graph of the likelihood 
function estimate )|( 10 µµ̂ˆ

BL , the prior density π(µ) and estimate of posterior density )|( 10µµπ ˆˆ  obtained with 
the bandwidth w = 0,03; (b) Posterior density of the damage probability at three values of the bandwidth w 

 
Three approximations of the posterior density )|( 10µµπ ˆˆ  computed at the three values of w are 

show in Fig. 4b. These approximations were obtained by a numerical calculation. The approximations 
)|( 10µµπ ˆˆ  express the epistemic uncertainty related to )|( AEDP i . The three approximations 
)|( 10µµπ ˆˆ  can be compared and so the influence of the bandwidth w on the posterior density assessed 

by calculating approximate confidence intervals for each of the three )|( 10µµπ ˆˆ . Table 2 shows three 
90 % confidence intervals at the three values of w. These intervals can be easily computed during the 
to numerical evaluation of )|( 10µµπ ˆˆ . The confidence intervals given in Table 2 can be compared 
with a 90 % bootstrap confidence interval computed using the ten-element sample p. The limits of the 
latter interval can be taken as the 5th and 95th percentiles of an ordered sample obtained from the 
bootstrap sample ( 1,10µ′ˆ , 2,01µ′ˆ , … , 1000,10µ′ˆ ) [6]. The bootstrap confidence interval is ]0.0902, 0.304[. 
This interval is based on the new data only (ignores the prior knowledge). It is apparent that the width 
of the intervals given in Table 2 is considerably smaller than the one of the bootstrap confidence 
interval. 

Table 2. Approximate 90 % confidence intervals calculated for the damage probability P(Di| AE)  
from posterior densities 

Bandwidth w Constant )( 10µ̂C  Confidence interval 
0,01 1,2311 ] 0,158; 0,308 [ 
0,02 1,2470 ] 0,159; 0,315 [ 
0,03 1,2713 ] 0,160; 0,326 [ 
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The approximate confidence intervals given in Table 2 may be used for making a decision 
concerning whether the resistance of the wall panels is sufficient to resist the damage Di or, 
alternatively, to design the panels for a tolerable value of the damage probability )|( AEDP i . 
 
7. CONCLUSION 
 

The paper presented an approach to assessing damage to buildings due to accidental explosions 
(AEs) on railway. The damage can be caused to nearby structures by the blast loading generated by an 
AE. The attention was focussed on quantifying uncertainties related to both characteristics of AEs and 
damage from them. The damage was understood as structural failures caused by blast loading. 
Probabilities of these failures (damage probabilities) were taken as damage measures. The prediction 
of damage was realised as estimating the damage probabilities. A procedure for estimating the damage 
probabilities has been proposed. The basis of the procedure is an application of a computer intensive 
method of applied statistics that is called the Bayesian bootstrap. This method is used for expressing 
estimates of the damage probabilities in terms of Bayesian posterior distributions. These distributions 
were treated as measures of epistemic uncertainty in the damage probabilities. 

Formally, the Bayesian bootstrap was applied to Bayesian inference using prior knowledge. It 
consists of mathematical models and historical data suitable to an approximate prediction of loading 
from an AE. Another part of this knowledge is new information. It is represented by a small-size sample 
of highly case-specific measurements of the AE. The procedure is to a large measure automatic. It does 
not require any statistical derivations. Therefore, it can be applied to a practical assessment of existing 
structures build in vicinity of railway and exposed to the hazard of AEs. The procedure can also be 
applied to specifying safe distances between railway and nearby future buildings. 
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