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1. Introduction 

 
The knowledge about granular materials is rather 

limited compared to the respective information on the sol-
ids, while a unified theory encompassing all granular mate-
rial phenomena has not been created yet [1].  

Despite the fact that granular material is the dis-
continuous media its behavior is commonly described by 
the continuum approach. Consequently, the definition of 
stresses in granular material is a controversial topic of me-
chanics [2, 3]. In particular, some researchers (e.g. [4]) 
claim that the stress tensor is asymmetric and the coupled 
stresses responding to the material instabilities, such as 
shear bending, exist. Others (e.g. [5]) affirm that stress 
asymmetry is not bound or can be negligible in practical 
predictions.  

The simplified continuum models are used to pre-
dict the pressure fields, especially those acting on the walls 
but they have serious drawbacks in evaluating the effects 
occurring on the particle level. Furthermore, the experi-
mental stress investigations within the granular material 
are also complicated, requiring non-invasive and precise 
contact force measurements [6, 7]. An alternative is to per-
form DEM-based [8] simulations and then average the 
particle contact forces and their contact locations over the 
particular volumes. Such numerical studies based on the 
linkage of microscopic variables in discrete concept to the 
macroscopic variables in continuum approach can be found 
in e.g. [3], [9, 10].  

In the current research, the numerical stress analy-
sis of granular material, based on discrete particle model 
involving laws of single particle contact mechanics and the 
effects of friction as well as viscous damping forces is per-
formed. Verification of the obtained results and their com-
patibility with well-known continuum-based indications 
are also demonstrated. 

 
2. Theoretical background  

 
Let us consider the volume V of a granular mate-

rial filled with N number of spheres. Some of them can be 
subjected to external forces applied from the exterior, 
while internal forces acting on the particles are represented 
by the particle contact forces. From the experimental in-
vestigations (e.g. [6, 7]), it is well known that the force 
amplitude fluctuates from contact to contact. From theo-
retical point of view, it is also well known (e.g. [5]) that 
the macroscopic mean stress tensor can generally be de-
rived from the microscopic quantities of discrete particle, 
such as the contact force distribution and the contact loca-
tion, as their complex homogenization over the volume V 
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where  and  are contact force and contact position 
vector at the contact c while i (j) denotes the ith (jth) com-
ponent of these vectors over the range i,j=1, 2, 3 or i,j≡x, y, 
z. 
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In general, the symmetrical stress tensor ijσ  de-
fines the three-dimensional state of stresses which act on 
three mutual perpendicular planes at a given point of 
granular material.   

Now let us consider the assembly of granules 
bound by rigid walls into a cuboid shape. The particles 
contacting with the walls cause wall reaction forces that 
can be treated as external actions on the granular assembly. 
The assembly of particles subjected to the external forces 
is in equilibrium, when each particle subjected to the ac-
tion of internal (contact) forces is in equilibrium. There-
fore, the stresses, acting on cuboid faces, can be simply 
found if the corresponding particle-wall reaction force vec-
tors at the contact cwcR w are known. They are as follows 
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where  is the ith face area of the cuboid.  iA
Since Eq. (1) substantially produces averaged 

stresses in the centre of the volume, averaged reaction 
forces must also be used in Eq. (2). In these formulations, 
the first subscript refers to the face of cuboid on which the 
stress acts and the second subscript refers to the direction 
in which the associated force acts. 

Thus, the stresses resulted from their homogeniza-
tion in the given volume, according to Eq. (1) and those 
induced by wall reaction forces, according to Eq. (2), will 
be verified below.  
 
3. Numerical analysis 

 
The current numerical analysis is intended to: 

analyze stress distribution within granular material caused 
mainly by the granular material weight and friction; ex-
plore inaccuracies that can arise from the numerical im-
plementation of Eq. (1) or the continuum representation by 
a priori chosen amount of the discrete particles; evaluate 
the stresses obtained by Eq. (1) comparing them with those 
obtained by Eq. (2). The circumstances of the comparison 
are attributed to frictionless and frictional granular mate-
rial. 
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3.1. The technique used 
 
Stress analysis of granular material involving dif-

ferent analysis techniques could be found in literature. For 
instance, Bardet [2] analytically investigated the reason for 
stress asymmetry in double and multiple layers, while La-
grange’s multiplier method, mainly based on statistical 
physics, was implemented by Evesque [11] in modeling 
the densifying of spherical granules. Nevertheless, the dis-
crete element method, introduced by Cundall and Strack 
[8] has been recognized as a more powerful and universal 
tool for such analysis. Therefore, the DEM technique 
based on [12-14] was implemented in the current simula-
tion and is briefly described below.  

Let us consider the kinematics and contact ge-
ometry of two spherical particles plotted in Fig. 1. 
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Fig. 1 Contact geometry of the particles 

Two particles in contact, i and j, are defined by 
their positions xi and xj, representing the locations of the 
centres of gravity Oi and Oj (Fig. 1). Position of the parti-
cles is time-dependent. The particles are subjected to the 
translational velocities vi and vj, as well as the rotation ve-
locities wi and wj.  

In terms of DEM, the particles are treated as indi-
vidual objects with their own dynamical parameters (posi-
tion, velocity, etc.). Therefore, the dynamics of each parti-
cle can be defined by forces and torques acting on the par-
ticle and described by a system of dynamical equations 
within Newton’s laws 
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where xi, θi are position vectors of the of the centre of 
gravity and orientation of the particle (Fig. 1), mi is the 
mass of the particle i (i = 1, …, N),  Ii is inertia moment of 
the particle,  is inter-particle or particle-wall contact 
forces acting on the contact centre point C

ijF

ij  (Fig. 1),  is 
the vector specifying the position of the contact point C

cijd

ij 
with respect to the centers of contacting particles (Fig. 1), 
g is the vector of gravity acceleration, while t is the time 
considered.  

Contact deformation of the particle i with respect 
to another particle j is approximated by representative 
overlap area in the vicinity of contact centre point Cij. 
Hence, the resulting contact force Fij arising from a visco-
elastic collision between particles i and j and acting on this 
point is expressed in terms of the normal and the tangential 
components 
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2  and  

are the vectors of elastic and viscous damping forces nor-
mal to the contact surface; α is the power coefficient (for 
Hooke’s law, α = 1); E and ν are the elastic modulus and 
Poisson’s ratio of particle material, h

ij,nijn
v
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ij is the overlap 
(Fig. 1),  and  are the normalized radius and nor-

malized mass,  is the unit vector normal to the contact 

surface (Fig. 1); 
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v
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e
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ij,t tFFF +−= μ   are the vectors of static 

and dynamic friction forces acting in tangential to the con-
tact surface direction,  is the unit vector of tangential 
direction depending on tangential velocity (Fig. 1),  
and  are the normal and tangential components of con-
tact velocities depending on v

ijt

ij,nv

ij,tv

i and vj, as well as wi and wj, 
γn and γt  are the viscous damping coefficients in normal 
and tangential directions.   

A detailed description of the above force models 
can be found in [12, 14]. 

Relating the stress tensor from Eq. (1) with 
Eq. (5) and relying on the similarity of the contact geome-
try outlined in ( 

Fig. 1), the equality of  and  are 
used in the current analysis.  

ij
c FF ≡ cij

c dl ≡

The time-dependent contact forces Fij are com-
puted at each time step by applying contact searching algo-
rithm described in [13]. Linkage of these forces with the 
particle dynamical parameters is performed by resolving 
Eqs. (3) and (4) by using 5th – order Gear’s predictor-
corrector scheme [12, 14].     

 
3.2. Description of the tests  

 
The tests performed involve numerical simulation 

of granular material behavior for frictionless and frictional 
particles. The material is considered as an assembly of 
N = 1980 particles. The values of the particle radii Ri, rang-
ing from 0.03 to 0.035 m, are generated by using uniform 
distribution. Total mass M of the material is fixed to be the 
same for frictionless and frictional particles and is equal to 
M = 143.7 kg. The main data on the visco-elastic granules 
are given in Table.  

The granular assembly is subjected to two-stage 
compaction in the defined size of the box. The first part 
involves particle compaction due to their free fall, while 
the second stage comprises particle compaction by the 
moving wall.  
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                                                                    Table 
Basic data on granules 

 

Quantity Symbol Value 
Density, kg/m3 ρ 500 
Poisson’s ratio  ν 0.30 
Elasticity modulus, Pa E 0.3·106

Shear modulus, Pa G 0.11·106

Friction coefficient μ 0; 0.3 
Normal viscous damping coefficient, 
1/s 

γn 60.0 

Tangential viscous damping coeffi-
cient, 1/s 

γt 10.0 

  
The creation of granular assembly starts from the 

particles falling due to the fixed gravity acceleration in the 
box (Fig. 2).  

 
Fig. 2 Behavior of the particles under the compaction 

caused by gravity (µ=0)  

For this purpose, the space above the box was di-
vided into cubic cells as an orthogonal and uniform 3D 
grid of 0.1 m size. Initially, at time t = 0, the particles were 
embedded into the centers of the cells and were free of 
contact. In order to mix up the particles during their set-
tling the initial particle velocities are artificially imposed. 
The fields of particle velocities were defined randomly by 
uniform distribution and variation of their magnitude over 
the range of 0-0.3 m/s. The frictionless particles behavior 
at the time instance, t=1 s, the size of the box and the sys-
tem of global coordinates are shown in Fig. 2. 

The end of the first stage of compaction is as-
sumed to be a quasistatic state of particles which under-
went negligible small velocities. The occurrence of a qua-
sistatic mode was controlled by the system’s kinetic en-
ergy.  

In order to slightly consolidate the settled material 
and to control numerically the changes in the volume of 
particles assembly, the particles compaction by the moving 
wall was adopted in the second stage. Thus, the theoreti-
cally assumed time instance of the quasistatic stage is fixed 
as the time of the second stage beginning. Consequently, a 
new time scale referred to as the initial time t = 0 was em-
ployed and all dynamical parameters of the particles ob-
tained at the quasistatic mode were assumed to be the ini-
tial conditions. The top wall motion was induced by im-
posing vertical velocity equal to vbc,z=-0.01 m/s. The dura-
tion of the second stage was assumed to be 1s, which lead 
to vertical deformation of the assembly equal to -9.2 o/oo 
and -8.6 o/oo for frictionless and frictional material, respec-
tively. 

 
3.3. Results and discussion 

 
Let us firstly consider the results obtained for fric-

tionless particles. This assembly of particles, for which the 
stress computations will be performed later is depicted in 
Fig. 3. The obtained structure of granules was captured at 
the end of the first compaction stage, while the color-bar 

depicted shows the inter-particle contact forces, ∑
≠ ji

ijF . 

These forces will be used to calculate stress tensor (1). 
 

 
Fig. 3 The assembly of particles (µ=0) and the particle 

forces (measured in N) 

In Fig. 3, the formation of material layers having 
different inter-particle contact force values is shown. The 
magnitudes of these forces at the top surface are much 
lower compared to those at the bottom, since these forces 
are caused by the weight of the granules. In the upper lay-
ers, these forces are distributed more uniformly, while the 
layers above the bottom wall are characterized by less-
uniformly distributed contact forces. 

The plots of vertical force equilibrium during the 
second stage of compaction (i.e. compaction by the mov-
ing wall) are shown in Fig. 4.   
 

 
Fig. 4 Forces vs time (µ=0) 

In the graphs of Fig. 4, equilibrium between the 
reactions of the top and bottom walls (  and , 
respectively) and the force induced by the particles weight 
can be treated as satisfying. A relatively low artificial 
damping, (error, ranging from 0.4% to 3%), indicates that 
the particles assembly subjected to external (wall reaction) 
forces and internal (contact) forces is in equilibrium. 
Moreover, the visible time-fluctuation in reaction forces 
indicates that the assembly of frictionless particles is suffi-
ciently sensitive to external action produced by the moving 
wall. On the other hand, the time fluctuation of wall reac-
tion forces is related to the wave of inter-particle contact 
force propagation within the material.  

topR33
bottomR33

The obtained horizontal reaction averaged over all 
vertical walls ( ∑ lateralR41 ) is quite close to the vertical 
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reaction produced by horizontal walls, since the average 
area of vertical walls is two times greater than the area of 
the bottom in the current simulation (Fig. 4).  

At time instance t=1s, the average stress tensor (in 
Pa) computed by Eq. (1) in the whole volume of the as-
sembly shown in Fig. 3 is as follows 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1637.0-4.316.6
4.31550.2-3.5

16.63.51663.1-

ijσ   

As it can be seen, the values of shear stresses are 
sufficiently low, but not equal to zero, while three normal 
stresses are approximately equal, showing the fact that the 
assembly of frictionless particles is subjected to near-
hydrostatic pressure. Negative sign of normal stress de-
notes the material compression. 

The obtained nonzero shear stresses are mainly at-
tributed to a relatively small number of particles used in 
simulation and produce a certain friction effect resulted 
from the particle coordination peculiarities. It should be 
expected, that, with the increase of the particles number the 
difference between the components of normal stresses 
could be smaller, covering zero shear.   

The graphs comparing normal stresses computed 
by Eq. (1) and Eq. (2) are plotted in Fig. 5.  

 

 
 

Fig. 5 Normal stresses vs time in frictionless granular ma-
terial. Thin lines – Eq. (1), bold lines - Eq. (2) 

As it is shown in Fig. 5, there is a good coinci-
dence between normal stresses homogenized in the given 
volume by Eq. (1) and those produced by the averaged 
wall reactions according to Eq. (2). The difference in stress 

33σ , reaching up to 6%, is attributed to the above men-
tioned friction effect. 

Let us consider the results obtained for granular 
material which has the friction, µ=0.3. The obtained struc-
ture of the assembly is shown in Fig. 6. By comparing the 
particle forces depicted in Fig. 3 and Fig. 6, it can clearly 
be indicated that frictional material has non-uniform force 
distribution in the assembly. This means that some of the 
particles are subjected to higher contact forces than their 
neighbours. The observed bulk volume of the frictional 
assembly is greater than the volume of frictionless mate-
rial. The linked stress arches that form between the parti-
cles lead to increasing in the bulk volume and thus increase 
the overall porosity of the assembly. 

The plots of vertical forces for frictional material 
are shown in Fig. 7. 

These graphs show the well-known fact that fric-
tional material transfers weight toward vertical walls via 

friction forces. The difference between vertical reactions of 
the top and bottom wall versus material weight indicates 
that the part of about 10% of the material weight is trans-
mitted to the vertical walls by its shear forces. This portion 
is quite small due to a sufficiently small size of the model 
used. It can also be seen, that there is no fluctuation of the 
reaction forces in time, what shows that the frictional par-
ticles are not sensitive (opposite to frictionless particles) to 
the given external action produced by the moving wall.  

 

 
 

Fig. 6 Assembly of particles (µ=0.3) and the particle forces 
(measured in N)  

 
 

Fig. 7 Forces vs time (µ=0.3) 

At the time instance t=1 s, the average stress ten-
sor (in Pa) homogenized by Eq. (1) in the volume of fric-
tional particles’ assembly shown in  

Fig. 6 is as follows 
 

-1299.80 0.423 -0.413
0.221 -1284.66 -21.43
-0.422 -22.51 -1516.53

ij

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

σ   

Since the stress tensor (1) is symmetric, any com-
puted asymmetry in  should be interpreted as an inaccu-
rate calculation or the lack of static equilibrium. The ob-
tained stress values indicate that the symmetry in stress is 
effectively satisfied. The relatively small inconsistence is 
found for stresses  and . This could also be attribu-
ted to the assembly thinness as was pointed out in [

ijσ

12σ 21σ
2]. In 

addition, the condition 221133 σσσ >>  suggests that ac-
tive stress state occurs after the first stage of compaction 
[15].  

The graphs comparing normal stresses computed 
by Eqs. (1) and (2) (bold lines) in frictional granular media 
are plotted in Fig. 8.  

Fig. 8 shows good matching of normal stresses 
homogenized in the given volume by Eq. (1) and those 
produced by the averaged walls reaction for frictional par-
ticles. The difference up to 3% is mainly referred to the 
stress 33σ .  
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Fig. 8 Normal stresses vs time in frictional material. Thin 

lines – Eq. (1), bold lines - Eq. (2) 

It is very difficult to make accurate stress meas-
urements within the bulk mass of the material by experi-
ments. Nevertheless, there are continuum-based indications 
about the distribution of stresses within granular material. 
Verifying these assumptions, let us now consider the dis-
tribution of stresses within granular material obtained nu-
merically. 

For the stress derivation within the granular mate-
rial, the whole volume was divided into representative 
spheres, while microscopic quantities of the particle within 
these spheres were homogenized by using Eq. (1). The 
volume of the material within a given sphere was defined 
by excluding particle overlaps, while the volume of the 
representative sphere adjacent to the wall was also deter-
mined, relying on the sphere-wall intersection geometry. 
The computed stress tensor components were then dis-
played on a spatial grid. This was made by using a three-
dimensional cubic spline interpolation/extrapolation pro-
cedure, allowing computing the values of spatial stress 
function on the intermediate and out-of-the range points of 
the grid. The obtained distribution of normal stress 33σ  
within the frictional granular assembly is presented in 
Fig. 9. The midsection stress was captured at the end of the 
first stage of compaction.  

As shown in Fig. 9, the normal stress 33σ  in-
creases with the increase of the material depth, z, since it is 
caused by the material weight. Moreover, at any vertical 
cross-section the computed )(33 zσ  is nonlinearly depend-
ent on material depth z indicating that particles friction 
forces transmit the material weight towards vertical walls. 
The quantitative illustration of this, considering wall reac-
tion forces can also be found (Fig. 7).   

 
Fig. 9 Distribution of 33σ  in frictional granular material 

(µ=0.3) 

The distribution of normal stresses (Fig. 9) has a 
convex shape with peak values at the centre and lower val-
ues at the wall planes due to the increase of shear stress 
toward the walls. In particular, the obtained convex shape 

of σ33 is well-coincident with the asymptotic stress distri-
bution found by Drescher [16] by using the method of 
characteristics in the analysis of hopper wall pressure.  

The eigenvalues, as well as eigenvectors, of stress 
tensor (1) were also analyzed. The eigenvalues represent 
principal stresses, while eigenvectors denote orientations 
of the planes, on which the principal stresses act (see 
sketch on Fig. 10). The trajectories of the principal stress 

1σ represented as eigenvectors n1 are plotted at the end of 
the first compaction stage in Fig. 10. 

 

 
 

Fig. 10 Trajectories of the principal stress 1σ  (µ=0.3) 

From the continuum analysis [16], it follows that 
for the corresponding active stress state the trajectories of 

1σ  are approximately vertical with a slight bending to-
wards the walls due to shear. The obtained numerical re-
sults shown in Fig. 10 are effectively consistent with this 
indication.  

 
4. Concluding remarks 

 
It is very difficult to make experimentally accu-

rate stress measurements within the bulk mass of material. 
Consequently, a discrete particle model based on inter-
particle contact forces with laws of classical Newton’s 
mechanics was applied to stress numerical analysis in 
granular material. The macroscopic stress tensor was ho-
mogenized by Eq. (1), taking into account microscopic 
quantities of particles, and then comparing it with the nor-
mal stresses produced by the averaged wall reactions by 
Eq. (2). The accuracy of these results was satisfactory. 
After verification, the obtained stresses were examined in 
terms of well-established assumptions of the continuum 
mechanics.  

In particular, the contribution of friction forces 
(produced by a discrete particle model) on bulk material 
weight transmitted toward vertical walls was revealed by 
the wall’s reaction forces, the distribution of normal 
stresses within the material as well as by the respective 
values of the mean stress tensor (1). The obtained convex 
shape of vertical normal stress distribution is well-
coincident with the asymptotic stress character prevailing 
for an active stress state. 

The computed mean stress tensor (1) for an as-
sembly of granules satisfied sufficiently the continuum-
based conditions on shear stress symmetry, while the de-
termined trajectories of principal stress were effectively 
consistent with the indications of the continuum-based 
approach. 

The obtained nonzero shear stresses for fric-
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tionless material were mainly attributed to a relatively 
small number of the particles used, producing certain het-
erogeneity of material and resulting in a portion of friction. 
It should be also noted that discrete particle micro-
mechanical properties contribute the stress fields that 
would be more precise with increasing number of the par-
ticles in the model.  

The results obtained may contribute to better un-
derstanding of microscopic–macroscopic behavior of 
granular material.  
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R. Balevičius, D. Markauskas 
 
SKAITINIS GRANULIUOTOS MEDŽIAGOS ĮTEMPIŲ 
TYRIMAS  

R e z i u m ė 

Tiesiogiai išmatuoti granuliuotos medžiagos 
įtempius yra labai keblu. Todėl straipsnyje atliktas skaitinis 
šių įtempių modeliavimas įvertinant diskrečias daleles vei-
kiančias jėgas. Pateikta gautų rezultatų verifikacija ir jų 
suderinamumas su žinomais kontinuumo mechanikos tei-
giniais. 

 
R. Balevičius, D. Markauskas 
 
NUMERICAL STRESS ANALYSIS OF GRANULAR 
MATERIAL 
 
S u m m a r y 
 

From the experimental point of view, it is very 
difficult to obtain accurate stress measurements within the 
bulk of granular material. The numerical stress analysis 
based on the forces acting on the discrete particle was per-
formed. Verification of the obtained results and their com-
patibility with well-known continuum-based indications 
were demonstrated. 

 
Р. Балявичюс, Д. Маркаускас 
 
ЧИСЛЕННЫЙ АНАЛИЗ НАПРЯЖЕНИЙ В 
ГРАНУЛИРОВАННОМ МАТЕРИАЛЕ 

Р е з ю м е 

Измерение напряжений, действующих в гра-
нулированном материале, экспериментальным путем 
всегда сопровождается большими трудностями. По-
этому в данной статье произведен их численный ана-
лиз на основе сил, действующих непосредственно на 
частицы материала. Дана проверка и совместимость 
полученных результатов с известными предпосылками 
механики сплошной среды.   
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