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Abstract. Transverse and rotational vibrations of steel rope are important issues in various 
technical installations. Dynamic properties of rope fragment are also useful as diagnostic 
parameters for broken wire detection within steel rope. This paper is intended to research the steel 
rope dynamic properties using lumped mass model. Theoretical detection of desired natural 
frequencies and corresponding forms of axially tensed rope fragment is useful for the proposed 
method implementation. The proposed theoretical model is verified with results of experimental 
research of steel rope. The proposed model is focused on transversal and rotational rope vibration 
analysis; there is an aim to obtain rotational vibration shape of rope from excitation in transversal 
direction to rope axis. Obtained theoretically calculated amplitude-frequency characteristics are 
compared with experimentally measured and good coincidence noticed. Finally, conclusions are 
drawn on the performed rope modelling results. 
Keywords: steel rope diagnostics, lumped mass model, analytical analysis, numerical solution. 

1. Introduction 

Diagnostics of steel ropes is a vast area of technical activity; increasing amount of technical 
installations with ropes raises new tasks for their technical maintenance and early defect finding. 
Diagnostics of rope covers many fields, for example diameter diminishing, kinematic defects and 
many others, which has got well developed methods of control and equipment for such control. 
Nevertheless, broken wires in the rope and their localization along the rope length still beg for 
improvement of methods, otherwise this work is performed manually.  

Finding of broken wires of steel rope surface by electromagnetic methods is still problematic 
due to the complexity of rope design; these methods are perfect on solid bodies with some 
irregularities. 

Dynamic method of finding of broken wires in the rope [1, 2] brings another opportunity for 
its diagnostics.  

It is necessary to state, that rope consists of many wires, so one broken wire brings very little 
influence to the stiffness of the whole rope and natural frequency of system. 

2. Initial assumptions 

Method is realized with fragment of rope, which is fixed at the ends and loaded axially 90 % 
of its nominal strength. This fragment or rope is excited transversely to rope axis using vibrator, 
which performs harmonic vibrations.  

Few assumptions are necessary to build theoretical model of rope fragment. Size of wire is 
significantly smaller in size in comparison with the rope. Natural frequency of broken wire 
relatively to rope body is much higher than the whole rope fragment resonant transverse and 
rotational vibrations. These statements are quite obvious and are proven by experimental research 
[3, 4]. In this case vibrations of broken wire and whole rope can be approximately analyzed 
independently. Thus, by exciting axially loaded rope transverse lowest resonant vibrations, it is 
possible to state that broken wire elastic deformations are small and can be neglected. Wire is 
excited through rope body cinematically through attachment point; nevertheless, model in the 
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paper covers vibrations of rope body itself. Problem of broken wire vibration is solved using 
rotational form of rope vibration as sufficient condition for proposed method application [5-8]. 

From [9-11] and experimental experience is known, that axial tension of rope creates the twist 
of the rope. Therefore transversal vibrations of rope create rotational ones, exciting them 
parametrically. Parametrical vibrations have two time higher frequency than transversal ones. An 
effort is made to build a model of rope, which will evaluate transverse and rotational vibrations of 
rope and will enable simple modelling of rope without solving complex and heavyweight contact 
and friction problem like in case of the final element analysis. 

3. Theory 

Model of rope fragment was built as lumped mass model of massless string, with equal masses 
m were attached to string equally spaced by distance , as shown in Fig. 1. String is assumed to 
have stiffness in axial direction, bending and rotational directions. Tension of string will create 
twisting of neighboring mass.  

 
Fig. 1. Lumped mass model of rope fragment 

Rope is excited harmonically by force = sin , applied to th lumped mass. Position of 
vibrating rope fragment is defined by  generalized coordinates: , , . . . , , , , . . . , . (1)

In this model it is assumed that rope is vibrating in vertical (drawing) plane. Equations of 
movement of this model will be derived using Lagrange’s equation of the second kind: 

− + Φ + Π = . (2)

where ,  Π  – kinetic and potential energy of researched system, Φ  – dissipative function,  
 – generalized force applied to coordinate . 
Expressions of potential energy are built using methodology [12]. 
In such model every fragment of string is modelled as beam, fixed in one end and attached to 

solid body  with coordinate system , as shown in Fig. 2. 

 
Fig. 2. Coordinate system of elastic beam as  

massless string component 

 
Fig. 3. Coordinate system of solid body after small 

displacement and deviation 

In case of linear displacement  and deviation  are applied to solid body , coordinate system 
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axis will occupy new position ′ ′ ′ ′, as represented in Fig. 3. 
It is assumed that displacement and deviations are small. Then, projections of vector  and 

axis , ,  and deviation angles , ,  of coordinate system  is assumed to be 
generalized coordinates. 

Every coordinate corresponds to elastic reactions, which consists of main vector  and 
reactions of elastic beams to main moment  projections to axis  is , , , , , , 
where –  and –  – main force vector and main force moment vector correspondingly, applied 
in cross-section , assumed to be applied slowly and slowly restored to equilibrium. 

When in point  on beam applied main force vector –  and main force moment vector – , 
beam part  will remain in equilibrium, when force – and moment –  applied in cross 
section  and force  and moment  applied in cross section , as shown in Fig. 4. 

Equilibrium equation regarding point  is: − = 0,   − + ( ) × = 0,
or: = ,   = − ( ) × , (3)

where: ( ) – radius-vector of beam axis with ort in point ;  – is the arc of , calculated 
along the beam axis. 

Projections of vector ( ) to axis : ( ), ( ), ( ).  
After evaluation of these statements and assuming Eq. (3), these equations are given: = − ( ) + ( ) ,= − ( ) + ( ) ,= − ( ) + ( ) . (4)

Projections of vector  to axis of coordinate system  is represented in Fig. 5. 

 
Fig. 4. Equilibrium condition in the beam 

 

 
Fig. 5. Projections of vector  to axis of coordinate 

system  

Projections of vector  to axis of coordinate system  are bending moments ,  and 
torque : = + + ,= + + ,= + + , (5)

where: = α = α α αα α αα α α  – matrix of cosines. 
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In general case potential energy of beam is: 

Π = 12 + + , (6)

where  and  – are bending stiffness coefficients,  – is the torque stiffness,  – is the length of 
the beam. 

Here it is assumed that modelled rope is strait and rope twisting from its deviation is evaluated 
by inclination angle from axis . Also it is assumed that axis of rope remains in the plain, as 
explained in Fig. 6. 

Then equation of beam axis will have a form: = ( ) = ,   = ( ) = 0.01, = 0. (7)

Then matrix of cosines will be: 

= ′ ′ 0  − ′ ′ 0  0 0 1  = 1 0.01 0−0.01 1 00 0 1 . (8)

Equations, describing beam bending, in case of beam axis inclination and its point leaving 
plane  will develop torque. This can be evaluated as: = + ,   = − ( ) ,= − + ,   = + ( ) , (9)

where = , = , = .V = F , L = M , L = M  
Then potential energy will be: 

Π = 12 + . (10)

Coefficients  and  are obtained experimentally. 
After reordering and differentiation according ,  and , matrix of flexibility is given: 

. =
( )3 + 3 ( )2 − ( )2 ( )2 + 2( )2 − ( )2 + ( ) ( ) − ( )( )2 + 2 ( ) − ( ) ( ) − , (11)

where = 0.16875 – length of researched rope fragment; = ′( ) = 0.01; = 0.1485 N⋅m2; = = 54.626 N⋅m2. 

Generally matrix of stiffness: = . . 
In this case potential energy can be expressed as: 

Π = 12 ; ; . (12)
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Fig. 6. Deviation of rope axis in the plane 

 
Fig. 7. Beam, as component of rope model 

Active coordinates of beam as component to the rope are presented in Fig. 7. 
This beam will represent properties of rope and complex rope design then simply represented 

by such beam within prescribed paradigm. 

4. Building of rope model  

Dynamic model of rope fragment is built from the previously described beams as discrete 
elements. Model itself and live coordinates are presented in Fig. 8. As initially decided, model 
consists from 7 elements; therefore all matrixes have range 7. 

 
Fig. 8. Model of rope fragment 

By defining potential energy of one element and evaluating differences of coordinates, the 
potential energy of all system is built. By differentiating it according generalized coordinates = , , , , , , … , , , , general matrix of stiffness  is obtained.  

While process of damping here is just evaluated, it is assumed that damping matrix is 
proportional to matrix of stiffness, i.e. . = . 

Where = 0.0001 and this well corresponds to the experimental research. 
Matrix of inertia consists only from elements in main diagonal Eq. (13): 

. = diag ; ; ; ; ; , … , ; ; . (13)

All masses of elements are equal and real value of them: = = = = = = = 0.13725 kg.

Moments of inertia are also equal: = = = = = = = 2.352e-8 kg⋅m2.

Moments of bending = = = = = = = 7.8168e-5 kg⋅m2. 
Differential equations of whole rope fragment model is described in form as: 

. + . + = . (14)

Model is excited by transverse time dependent force, applied to 3rd lumped mass; therefore 
generalized forces are given in the form: 
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= , , , , , , , , , , , ,      , , , , , , , ,     = 0,0,0,0,0,0, , 0,0,0,0,0,0,0,0,0,0,0,0,0,0 , (15)

where only  is presented in the load vector. This form of input is directly used in the  
program [13]. 

5. Solution and results of rope model 

System of differential equations of model was solved numerically using MatLab module 
Simulink. By implementing operator of differentiating = ⁄  equations were transformed into 
operator form. 

This Eq. (16) is used to build such Simulink model and allows even enter more nonlinearities 
in the model, for example, nonlinear damping: 

= 1, ( ) ( ) + ℎ ( , , ) − , ( ) − , ( ) − ⋯     − , ( ) − , ( ) − ⋯ − , ( ) − , ( ) . (16)

Using methodology of [13], Simulink model was build. This model is universal and to any 
input from available ones is possible to add excitation as force or moment. 

In our case input for such system is sine wave, applied to 3rd mass as transverse force; 
therefore it corresponds to the conditions of experimental research and allows comparing these 
results. Below in Fig. 11, in photo of experimental setup, a mini exciter is seen, placed directly in 
the position on the rope, which corresponds to position or 3rd lumped mass on theoretical model, 
shown in Fig. 8.  

Solution in form of amplitude-frequency characteristic in dimensionless form delivers resonant 
frequencies. These characteristics are graphically presented in Fig. 9. Performing further results 
analysis, it is noticed, that first and second peak – 70 Hz and 130 Hz represent transverse 
vibrations, 3rd peak – 192 Hz corresponds to rotational form of vibrations. Nevertheless, all values 
of this characteristic on the graph represent rotational shape of vibration. Values of rotational 
vibration amplitude, presented in Fig. 9, are expressed in radians. 

 
Fig. 9. Resulting amplitude-frequency characteristics 

(rotational coordinate ) 

 
Fig. 10. Resulting amplitude-frequency 

characteristics for  as transverse vibration 

In case of analysis when only rotational form of vibrations is in the scope, result of variables 
, , …,  gives the answer. Higher shapes of vibrations here are not covered and neglected, 
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as they have no practical value. Higher frequency vibrations have tiny amplitudes (order of 
micrometers) and measurement of them in real equipment is costly and hardly applicable. First 
rotational vibration shape at 192 Hz brings over 10 time’s bigger amplitude of response to 
excitation amplitude, for such measurement requires simple enough equipment. 

Pure transverse vibration as output of  is presented in Fig. 10. There is no 3rd peak, 
representing pure rotational shape of vibration. 

Practical implementation of rope model for definition of desired vibration shape frequency is 
based on obtaining of clear rotational vibration shape. In case of some extra masses or inertia 
moments on rope (grease, dirt, special marks, etc.), it should be evaluated by input of these in the 
initial data.  

Experimental research was performed using 4 mm rope (5), which was clamped in holders (2) 
and (7) and tensed with 300 N axial forces. Electrodynamics mini exciter 4810 (6) is tightly 
clamped to frame (1) and to rope (5) (Fig. 11). 

 
Fig. 11. Test rig vibration measuring diagram: 1 – test rig body; 2 – rope support; 3 – linear displacement 

transducer “Hottinger Tr4”; 5 – linear displacement transducer “Hottinger Tr102”; 5 – tested rope;  
6 – electro dynamic mini exciter type 4810; 7 – rope support; 8 – exciter amplifier 2706; 9 – amplifier 

“Hottiger KWS 503 D”; 10 – generator for electro dynamic mini exciter type 1027; 11 – computer 

Electrodynamics mini exciter 4810 (6) is fed through amplifier 2706 (8) from generator. 
Vibration of rope and rope broken wire is measured by linear displacement transducer “Hottiger 
Tr102” (4), which is fixed in holder of sensor Tr102. Vibration of broken wire was measured by 
linear displacement sensor “Hottiger Tr4” (3), which was fixed in holder of sensor Tr4. Signals of 
displacement sensors (4) and (3) through amplifier “Hottiger KWS 503 D” (9) were transmitted 
to processing centre 9727 driven by computer (11). 

 
Fig. 12. Experimentally defined amplitude-frequency characteristics of rope fragment  

with the same physical parameters 
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Amplitude-frequency characteristics, obtained during experimental research, are presented in 
Fig. 12. Peaks in the presented graph, are placed in the same order, first peak – 64 Hz, second 
peak 130 Hz. Two first peaks represent transverse vibrations and this is detected by measurements. 
Third peak with frequency 193 Hz represent rotational vibration, sensors detected vibration in 
transverse vibration shape, too. Experimentally obtained results are important, that resonant 
frequencies shown in the Fig. 12 corresponds to theoretically prescribed results. Each shape of 
rope vibration – rotational, transverse is important as dynamic response to parametric excitation, 
nevertheless only rotational vibration shape is important for broken rope wire detection and here 
it is evidently presented and corresponds to 3rd resonant frequency. There should be added that in 
all vibration shapes transverse vibration is present, i.e. no pure rotational shape available here, but 
for practical measurements in 3rd shape transversal component is neglected.  

Good correspondence of frequency between theoretical and experimental research results 
brings possibility of implementation of presented methodology of modelling. 

Method detection of broken wire in the rope uses excitation of rotational shape of tensed steel 
rope using transverse excitation by vibrator. Presented material in the paper proves theoretically 
and experimentally, that it is possible to excite rotational vibration of rope in the technical 
equipment, where access for rotational equipment is technically not possible. Detection of broken 
wire itself based on use of contactless sensors able to detect vibration of free wire ending, placed 
distantly from rope surface. 

6. Concluding remarks 

Performed analysis of rope fragment as simplified lumped mass model with specific behavior 
allows drawing some conclusions: 

1. Good coincidence of theoretical and analytical solution demonstrates adequacy of chosen 
theoretical model. 

2. Comparison of analytical obtained and experimentally measured resonant frequencies 
brings quite good coincidence on first 3 frequencies (8 %). 

3. Created methodology can be easily implemented for different size and design rope behavior 
modelling and requires simply define two static characteristics experimentally. 
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