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Multiple criteria decision making methods have received different extensions under the uncertain environment in recent years.
The aim of the current research is to extend the application of the MULTIMOORA method (Multiobjective Optimization by
Ratio Analysis plus Full Multiplicative Form) for group decision making in the uncertain environment. Taking into account the
advantages of IVIFS (interval-valued intuitionistic fuzzy sets) in handling the problem of uncertainty, the development of the
interval-valued intuitionistic fuzzy MULTIMOORA (IVIF-MULTIMOORA) method for group decision making is considered in
the paper. Two numerical examples of real-world civil engineering problems are presented, and ranking of the alternatives based
on the suggested method is described. The results are then compared to the rankings yielded by some other methods of decision
making with IVIF information. The comparison has shown the conformity of the proposed IVIF-MULTIMOORA method with
other approaches. The proposed algorithm is favorable because of the abilities of IVIFS to be used for imagination of uncertainty
and the MULTIMOORA method to consider three different viewpoints in analyzing engineering decision alternatives.

1. Introduction

Multicriteria decision making (MCDM) is a growing field
of operations research both from theoretical and imple-
mentation perspectives. The importance of MCDM can be
drawn from Zeleny [1]: “it has become more and more
difficult to see the world around us in a uni-dimensional
way and to use only a single criterion when judging what
we see. We always compare, rank, and order the objects of
our choice with respect to multiple criteria of choice.” The
MCDM field is further divided into two classes, including
multiobjective decision making (MODM) and multiattribute
decision making (MADM). These classes are, respectively,
associatedwith planning and selection classification of Simon

[2] for decision making problems. The main topic of this
paper covers MADM.

A MADM problem can be formally characterized as the
task to evaluate, compare, and rank a set of finite alternatives,
options, or choices with regard to a set of finite attributes.
According to Yu [3], a MADM problem is composed of
the set of substitutive alternatives (1), the set of evaluation
criteria (2), the outcome (or decision) matrix with regard to
the alternatives scored based on the evaluation criteria (3),
and the preference structure of decision making about the
criterion significances or weights (4). The information about
the third and fourth parts of a decision making problem
is determined exactly. However, a decision maker always
deals with approximate or partial information [4]. Therefore,
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exactness is an unrealistic assumption. Different frameworks
have been proposed to handle uncertainty in practice. Liu
and Lin [5] classified these frameworks into probability and
statistics (1) and grey system theory and fuzzy set theory
(2). Fuzzy set theory introduced by Zadeh [6] is widely
applied to decision making problems. In other words, the
fuzzy set theory is a generalization of ordinal sets, where
a membership degree is assigned to each element of a set.
Each type of uncertainty has its own characteristics and is
appropriate for special cases. While probability is concerned
with the occurrence of well-defined events, fuzzy sets deal
with gradual concepts and describe their boundaries [7]. In
fact, the fuzzy set theory is appropriate for recognition-based
uncertainty that is common in decision making.

Determining a single membership degree is a difficult
task for decision makers and, therefore, Grattan-Guinness
[8] believes that presentation of a linguistic expression in
the form of a fuzzy set is not sufficient. In 1986, Atanassov
[9] introduced the notion of intuitionistic fuzzy sets (IFSs)
as an extension of ordinal fuzzy sets. In addition to a
membership degree of each element, IFS assigns a degree of
nonmembership to each element. Later, Atanassov and Gar-
gov [10] extended the interval-valued intuitionistic fuzzy sets
(IVIFSs), where membership and nonmembership degrees
are stated as closed intervals.

When it became obvious that the type 1 fuzzy sets were
not always sufficient for MADM under uncertain environ-
ment, type 2 fuzzy sets, involving interval-valued as well
as intuitionistic fuzzy sets, were proposed. As a result, the
MULTIMOORA method was updated by using generalized
interval-valued trapezoidal fuzzy numbers [11] or intuition-
istic fuzzy numbers [12]. The method has been successfully
applied to making economic, technological, or management
decisions. The applications of various approaches in 2006–
2013, including crisp and extended methods, were summa-
rized by T. Baležentis and A. Baležentis [13]. The most recent
applications cover the extended versions of the method, in
particular, the fuzzy MULTIMOORA [14, 15] or MULTI-
MOORA based on the interval 2-tuple linguistic variables
[16]. Also, Li [17] extended MULTIMOORA with hesitant
fuzzy numbers, where membership degree of elements is
defined over a set of different values.

The current research aims to extend the MULTIMOORA
method, using the interval-valued intuitionistic fuzzy sets.
Taking into account the advantages of IVIFS, the interval-
valued intuitionistic fuzzy MULTIMOORA (IVIF-MULTI-
MOORA) method for group decision making is presented
in the paper. For this reason, three parts of MULTIMOORA
were extended under IVIF information and the appropriate
algorithm was proposed.

The paper is organized as follows. In Section 2, the
literature review is presented and then the crisp version of
MULTIMOORA is briefly overviewed in Section 3. Section 4
includes a brief description of the interval-valued intuitionis-
tic fuzzy sets.The proposed IVIF-MULTIMOORA algorithm
is presented in Section 5. The solution of two numerical
examples of civil engineering problems is given in Section 6,
while the results obtained are compared with the data yielded
by some other methods of IVIF decision making. Finally, the

discussion and the conclusions are presented in Sections 7
and 8.

2. Literature Review

Taking into account the flexibility and general character
of IVIFS, researchers developed decision making methods
under the IVIFS environment. Some researchers developed
the well-known MADM methods in the IVIF form. Some
authors [18–20] proposed different frameworks of TOPSIS
method under the IVIF environment. Li [21, 22] developed
somemathematical programming-basedmethod to solve the
MADM problems with both ratings of the alternatives on
attributes and weights of attributes expressed with the help
of IVIFS. Park et al. [23] presented an IVIF version of the
VIKOR method. Li [24] proposed a closeness coefficient
based on the nonlinear programming method for solving
IVIF MADM problems. Chen et al. [25] solved the MADM
problems based on the interval-valued intuitionistic fuzzy
weighted average operator and newly defined fuzzy rank-
ing method for intuitionistic fuzzy values. Yu et al. [26]
introduced some IVIF aggregation operators and applied
them to solving various decision making problems. Zhang
and Yu [27] presented an optimization model to determine
the attribute weights in an IVIF decision making problem
and, then, used these weights in an extended TOPSIS to
rank the alternatives. Ye [28] introduced a cosine similarity
measure and a weighted cosine similarity measure toMADM
problems.Meng et al. [29] also proposed twonew aggregation
operators, that is, the arithmetical interval-valued intuition-
istic fuzzy generalized 𝜆-Shapley Choquet operator and the
geometric interval-valued intuitionistic fuzzy generalized 𝜆-
Shapley Choquet operator, and investigated their application
to solving MADM problems. Meng et al. [30] used Shapley
function in extending a generalized IVIF hybrid Shapley
averaging operator and proposed its application to solving
MADM problems. Razavi Hajiagha et al. [31] developed
Complex Proportional Assessment (COPRAS) method with
IVIF data. Chai et al. [32] proposed a rule-based decision
modelwhendecision information in a groupdecisionmaking
problem is provided as IVIF values. Wan and Dong [33]
defined the possibility degree of comparison between two
IVIF numbers and introduced two ordered averaging opera-
tors based on the Karnik-Mendel algorithm to solve MADM
problems with IVIF information. Chen [34] developed a
method based on the traditional linear assignment method
for solving decision making problems in the IVIF context.
Xu and Shen [35] presented the IVIF outranking choice
method to solve MADM problems, while Zavadskas et al.
[36] extended the IVIF weighted aggregated sum product
assessment (WASPAS) method. Geetha et al. [37] proposed
a new ranking method of IVIF numbers and extended its
application in decision making problems. Zhang et al. [38]
proposed a new definition of IVIF entropy an entropy-
based MADMmethod. Later, Wei, and Zhang [39] proposed
applying an entropy measure for IFSs and IVIFSs to assess
the experts’ weights for multicriteria fuzzy group decision
making. Tong and Yu [40] introduced a novel approach for
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ranking the alternatives based on the IVIF cross entropy
and TOPSIS in the IVIF environment. Wu and Chiclana
[41, 42] introduced a risk attitudinal ranking method for
IVIF numbers and applied this ranking method in a MADM
problem. They imposed a risk attitude parameter over IVIF
numbers ordinal score and accuracy functions [43] and used
this method for solving MADM problems.

As mentioned before the current paper has focused on
the extension of the MULTIMOORA (Multiobjective Opti-
mization by Ratio Analysis plus Full Multiplicative Form)
method. This method belongs to the group of complete
aggregationmethods, based on the reference point technique.
The crisp MOORA method (Multiobjective Optimization by
Ratio Analysis) was presented by Brauers and Zavadskas in
2006 [44].This method was further supplemented by the full
multiplicative form. The MULTIMOORA was suggested by
Brauers and Zavadskas in 2010 [45]. The method is based on
the theory of dominance [46] and enables us to summarize
MOORA, consisting of the ratio system and the reference
point approaches, as well as the full multiplicative form.
The robustness of the method has been proved [47] and it
has been successfully applied to evaluate decisions by using
a single approach or its combinations with other MADM
methods, such as TOPSIS [48] and WASPAS [49, 50].

Several developments of MULTIMOORA for the uncer-
tain environment have been presented. The fuzzy MUL-
TIMOORA was suggested by Brauers et al. [52]. To over-
come some drawbacks of the fuzzy set theory, the two-
tuple linguistic representation method for computing with
words can be applied [53]. Accordingly, the considered
method has been extended for group decision making based
on two tuples (MULTIMOORA-2T-G) [54, 55]. The fuzzy
MULTIMOORA, based on triangular fuzzy numbers and
designed for group decision making (MULTIMOORA-FG),
was introduced [56, 57]. As a further modification of the
method,MOORAwith grey numbers was developed [58, 59].

3. MULTIMOORA

Themethod summarizes three approaches, that is, MOORA,
consisting of the ratio system and the reference point, and the
full multiplicative form.

Regardless of the approach used, initial decision criteria
are transformed by applying vector normalization:

𝑥
𝑖𝑗
=

𝑥
𝑖𝑗

√∑
𝑚

𝑖=1 𝑥
2

𝑖𝑗

, (1)

where 𝑥
𝑖𝑗
is the initial criterion value, that is, the response of

the alternative 𝑖 to objective 𝑗; 𝑖 = 1, 2, . . . , 𝑚;𝑚 is the number
of alternatives; 𝑗 = 1, 2, . . . , 𝑛; 𝑛 is the number of decision
criteria (objectives); 𝑥

𝑖𝑗
is a dimensionless value of a decision

criterion.
The first part of the approach is based on the ratio

system [44]. To calculate the relative significance, 𝑦
𝑖
, of each

alternative 𝑖 with respect to all objectives 𝑗, the weighted
normalized criteria values should be added in the case
of maximization, while, in the case of minimization, the

weighted normalized criteria values should be subtracted as
follows:
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where 𝑗 = 1, 2, . . . , 𝑔 are maximized decision criteria; 𝑗 =

𝑔 + 1, 𝑔 + 2, . . . , 𝑛 are minimized decision criteria; 𝑤
𝑗
is the

weight (or relative significance) of a criterion.
The values of variables 𝑦

𝑖
show the preference of the

alternatives according to the ratio system approach.
The second part of the approach is based on the maximal

objective reference point [44]. First, the desirable ideal alter-
native should to be established. The virtual ideal alternative
consists of the best values of the considered criteria 𝑟

𝑗
. It

is formed by selecting the best criteria values from every
decision alternative based on their optimization direction,
that is, the maximal values from the criteria set 𝑗 = 1, 2, . . . , 𝑔
and the minimal values from the criteria set 𝑗 = 𝑔 + 1, 𝑔 +

2, . . . , 𝑛.
All criteria values were transformed by applying vector

normalization (1). Having the dimensionless values of the
criteria 𝑥

𝑖𝑗
and relative significances (weights) of the criteria

𝑤
𝑗
, decision alternatives are ranked based on the Min-Max

metric of Tchebycheff [60]:
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The second part of the approach is based on the full
multiplicative form, as presented by Brauers and Zavadskas
[44]. The full multiplicative form for calculating the utility of
the alternatives 𝑈

𝑖
is applied as follows:

𝑈
𝑖
=
𝐴
𝑖

𝐵
𝑖

, (4)

where 𝐴
𝑖
and 𝐵

𝑖
are calculated separately for maximized

decision criteria 𝑗 = 1, 2, . . . , 𝑔 and minimized decision
criteria 𝑗 = 𝑔 + 1, 𝑔 + 2, . . . , 𝑛, respectively. 𝐴

𝑖
and 𝐵

𝑖
are

calculated as follows:
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(5)

TheMULTIMOORA is based on the theory of dominance
[46] and summarizes the MOORA, involving the above
described ratio system and the reference point approaches,
as well as the full multiplicative form [45].

Robustness of the method has been verified proving that
accuracy of aggregated approaches is larger comparing to
accuracy of single ones [47]. The method has been widely
applied to evaluate alternatives and to select the best decisions
in engineering technology ormanagement problems by using
a single approach or its combinations with other MADM
methods [13, 48–50]. However, the farther the more complex
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decisions should be made and decision makers usually face
a larger amount of approximate or partial information.
Accordingly, extensions of conventional MADM methods
under uncertain environment for group decision making
are essential. The further developed IVIF-MULTIMOORA
method could be applied in innovation themes in engineer-
ing, such as sustainable building life-cycle modelling and
evaluating and selecting new business models to finance,
build, and manage public buildings and infrastructures.

4. Interval-Valued Intuitionistic Fuzzy Sets

Zadeh [6] generalized the characteristic function of classic
sets into membership function and introduced fuzzy sets,
where a membership degree was assigned to each element of
a fuzzy set. Later, Atanassov [9] proposed the idea of intu-
itionistic fuzzy sets (IFSs), when a nonmembership degree is
assigned to each element of the set alongside its membership.
The interval-valued intuitionistic fuzzy sets (IVIFSs) present
an extended form of IFSs.

Let 𝐷[0, 1] be the set of all closed subintervals of the
interval [0, 1] and let 𝑋( ̸= Φ) be a given set. An IVIFS in
𝑋 was defined as 𝐴 = {⟨𝑥, 𝜇

𝐴
(𝑥), V
𝐴
(𝑥)⟩ | 𝑥 ∈ 𝑋}, where

𝜇
𝐴
: 𝑋 → 𝐷[0, 1] and V
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: 𝑋 → 𝐷[0, 1] with condition
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𝐴
(𝑥) and

V
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(𝑥), 𝜇
𝐴𝑈
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𝐴𝐿
(𝑥), and V
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The IVIFS was denoted by

𝐴 = {⟨𝑥, [𝜇
𝐴𝐿 (𝑥) , 𝜇𝐴𝑈 (𝑥)] , [V𝐴𝐿 (𝑥) , V𝐴𝑈 (𝑥)]⟩ | 𝑥

∈𝑋} ,

(6)

where 0 ≺ 𝜇
𝐴𝑈
(𝑥) + V

𝐴𝑈
(𝑥) ≤ 1, 𝜇

𝐴𝐿
(𝑥), V
𝐴𝐿
(𝑥) ≥ 0. For con-

venience, the IVIFS value was denoted by 𝐴 = ([𝑎, 𝑏], [𝑐, 𝑑])

and referred to as an interval-valued intuitionistic fuzzy
number (IVIFN).

The algebraic operations were extended over IVIFSs. Let
𝐴1 = ([𝑎1, 𝑏1], [𝑐1, 𝑑1]) and𝐴2 = ([𝑎2, 𝑏2], [𝑐2, 𝑑2]) be any two
IVIFNs; then [43]

𝐴1 +𝐴2

= ([𝑎1 + 𝑎2 − 𝑎1𝑎2, 𝑏1 + 𝑏2 − 𝑏1𝑏2] , [𝑐1𝑐2, 𝑑1𝑑2]) ,
(7)

𝐴1 ⋅ 𝐴2

= ([𝑎1𝑎2, 𝑏1𝑏2] , [𝑐1 + 𝑐2 − 𝑐1𝑐2, 𝑑1 +𝑑2 −𝑑1𝑑2]) ,
(8)

𝜆𝐴1
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𝜆
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𝜆
] , [𝑐
𝜆
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𝜆

1]) ,

𝜆 ≥ 0.

(9)

The division and subtraction operations were defined as
follows, using the extension principle [61]:

𝐴1 ÷𝐴2 = {[min (𝑎1, 𝑎2) ,min (𝑏1, 𝑏2)] ,

[max (𝑐1, 𝑐2) ,max (𝑑1, 𝑑2)]} ,
(10)

𝐴1 −𝐴2 = {[min (𝑎1, 𝑎2) ,min (𝑏1, 𝑏2)] ,

[max (𝑐1, 𝑐2) ,max (𝑑1, 𝑑2)]} .
(11)

Since the final rating of the alternatives is usually deter-
mined as IVIFNs, it requires their comparison.This compar-
ison was made, using the score and accuracy functions [43].
Let 𝐴 = ([𝑎, 𝑏], [𝑐, 𝑑]) be an IVIFN. Then,

𝑠 (𝐴) =
1
2
(𝑎 − 𝑐 + 𝑏 − 𝑑) (12)

was called the score function of𝐴, where 𝑠(𝐴) ∈ [−1, 1], while

ℎ (𝐴) =
1
2
(𝑎 + 𝑐 + 𝑏 + 𝑑) (13)

was referred to as the accuracy function of 𝐴, where ℎ(𝐴) ∈
[0, 1].

For 𝐴1 and 𝐴2 as two IVIFNs, it follows that [43]

(1) if 𝑠(𝐴1) ≺ 𝑠(𝐴2), then 𝐴1 is smaller than 𝐴2, 𝐴1 ≺

𝐴2;

(2) if 𝑠(𝐴1) = 𝑠(𝐴2), then

(a) if ℎ(𝐴1) = ℎ(𝐴2), then 𝐴1 = 𝐴2,

(b) if ℎ(𝐴1) ≺ ℎ(𝐴2), then 𝐴1 is smaller than 𝐴2,
𝐴1 ≺ 𝐴2.

Another requirement of group decision making is asso-
ciated with the aggregation of different judgments of deci-
sion makers into a single estimate. In this case, aggre-
gation operators on IVIFNs can be used. Let 𝐴

𝑗
=

([𝑎
𝑗
, 𝑏
𝑗
], [𝑐
𝑗
, 𝑑
𝑗
]), 𝑗 = 1, 2, . . . , 𝑛, be a collection of IVIFNs.

Then, the generalized interval intuitionistic fuzzy weighted
average GIIFWA

𝑤
(𝐴1, 𝐴2, . . . , 𝐴𝑛) was defined as

GIIFWA
𝑤
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𝜆
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𝑛
)
1/𝜆

,

(14)

where 𝜆 ≻ 0, and 𝑤 = (𝑤1, 𝑤2, . . . , 𝑤𝑛)
𝑇 is the weight vector

with𝑤
𝑗
≥ 0, 𝑗 = 1, 2, . . . , 𝑛, and∑𝑛

𝑗=1 𝑤𝑗 = 1. It can be shown
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thatGIIFWA is also an IVIFNand can be calculated as follows
[62]:

GIIFWA
𝑤
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= ([

[

(1−
𝑛

∏

𝑗=1
(1 − 𝑎𝜆

𝑗
)
𝑤𝑗
)

1/𝜆

,

(1−
𝑛

∏

𝑗=1
(1 − 𝑏𝜆

𝑗
)
𝑤𝑗
)

1/𝜆

]

]

, [

[

1

−(1−
𝑛

∏

𝑗=1
(1 − (1 − 𝑐

𝑗
)
𝜆

)

𝑤𝑗

)

1/𝜆

, 1

−(1−
𝑛

∏

𝑗=1
(1 − (1 − 𝑑

𝑗
)
𝜆

)

𝑤𝑗

)

1/𝜆

]

]

) .

(15)

If 𝜆 = 1, then GIIFWA is turned into the interval
intuitionistic fuzzy weighted average (IIFWA).

5. IVIF-MULTIMOORA for
Group Decision Making

5.1. IVIF-MULTIMOORA. Assume that a group of 𝐾 deci-
sionmakers (experts) wants to appraise a set of𝑚 alternatives
𝐴1, 𝐴2, . . . , 𝐴𝑚, based on a set of 𝑛 criteria 𝐶1, 𝐶2, . . . , 𝐶𝑛.
Also, the weight vector 𝑤1, 𝑤2, . . . , 𝑤𝑛, with 𝑤

𝑗
≥ 0, 𝑗 =

1, 2, . . . , 𝑛, and ∑
𝑛

𝑗=1 𝑤𝑗 = 1 is determined that shows the
relative importance of different criteria on final decision. Due
to incomplete and ill-defined data, the required information
in the considered problem is expressed by IVIFNs.

At the first step, each decision maker expresses his/her
decision matrix𝑋𝑘, 𝑘 = 1, 2, . . . , 𝐾, as follows:

𝑋
𝑘
=

[
[
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[
[
[
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11 𝑥
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𝑘
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𝑘

2𝑛

.

.

.
.
.
. ⋅ ⋅ ⋅

.

.

.

𝑥
𝑘

𝑚1 𝑥
𝑘

𝑚2 ⋅ ⋅ ⋅ 𝑥
𝑘

𝑚𝑛

]
]
]
]
]
]
]

]

, (16)

where 𝑥𝑘
𝑖𝑗
represents the IVIF performance of the alternative

𝐴
𝑖
over the criterion 𝐶

𝑗
from the viewpoint of 𝑘th decision

maker. The aim of a decision making group is to rank the
alternatives.

To solve this MAGDM problem, an IVIF version of
the MULTIMOORA method, called IVIF-MULTIMOORA,
was extended and described in this section. Initially, the
aggregation was required to transform the set of 𝐾 decision
matrices to an aggregated decision matrix. This aggregated
decision matrix had the form of𝑋 = [𝑥

𝑖𝑗
]. If an equal weight

was assumed for decision makers, then

𝑥
𝑖𝑗
= ([𝜇

𝑙

𝑖𝑗
, 𝜇
𝑢

𝑖𝑗
] , [V𝑙
𝑖𝑗
, V𝑢
𝑖𝑗
]) = IIFWA (𝑥1

𝑖𝑗
, 𝑥

2
𝑖𝑗
, . . . , 𝑥

𝐾

𝑖𝑗
) . (17)

The aggregation operation was performed using the
GIIFWA operator and considering the weight vector 𝑉 =

(V1, V2, . . . , V𝐾) for different decision makers.
Since the aggregated decision matrix 𝑋 = [𝑥

𝑖𝑗
] was

available, the IVIF-MULTIMOORA method was proposed
to solve the MAGDM problem. As mentioned in Section 3,
the MULTIMOORA method involves three parts: the ratio
system (1), the reference point approach (2), and the full
multiplicative form (3).

5.2. The Part of MOORA Based on the IVIF-Ratio System.
The first step in the ratio system is the normalization of the
decision matrix. However, since IVIFNs are commensurable
numbers, normalization is not required. The set of criteria
was decomposed into two subsets of the benefit criteria
(where more is better) and cost criteria (where less is better).
Then, the 𝑦

𝑖
, 𝑖 = 1, 2, . . . , 𝑚, score of alternatives was com-

puted by adding its weighted benefit criteria and subtracting
the weighted cost criteria. If the benefit criteria were ordered
as 𝐶1, 𝐶2, . . . , 𝐶𝑔 and cost criteria as 𝐶

𝑔+1, 𝐶𝑔+2, . . . , 𝐶𝑛, then

𝑦
𝑖
=

𝑔

∑

𝑗=1
𝑤
𝑗
𝑥
𝑖𝑗
−

𝑛

∑

𝑗=𝑔+1
𝑤
𝑗
𝑥
𝑖𝑗
. (18)

This score could be computed by applying the IVIFNs
algebraic operators and the extension principle given in
Section 4. However, a slight modification could simplify the
computations. Let𝑊+ = ∑𝑔

𝑗=1 𝑤𝑗 and𝑊
−
= ∑
𝑛

𝑗=𝑔+1 𝑤𝑗.Then,
𝑤
󸀠

𝑗
= 𝑤
𝑗
/𝑊
+ for each 𝑗 ∈ {1, 2, . . . , 𝑔}, and 𝑤󸀠󸀠

𝑗
= 𝑤
𝑗
/𝑊
−

for each 𝑗 ∈ {𝑔 + 1, 𝑔 + 2, . . . , 𝑛}. It was clear that 𝑤󸀠
𝑗
≥

0, 𝑗 = 1, 2, . . . , 𝑔, and ∑𝑔
𝑗=1 𝑤
󸀠

𝑗
= 1. Similarly, 𝑤󸀠󸀠

𝑗
≥ 0, 𝑗 =

1, 2, . . . , 𝑔, and ∑𝑔
𝑗=1 𝑤
󸀠󸀠

𝑗
= 1. Then,

𝑦
󸀠

𝑖
=

𝑦
𝑖

𝑊+𝑊−
. (19)

Multiplying both sides of (18) by positive value of
1/(𝑊+𝑊−), (18) was transformed as follows:

𝑦
󸀠

𝑖
=

1
𝑊−

𝑔

∑

𝑗=1
𝑤
󸀠

𝑗
𝑥
𝑖𝑗
−

1

𝑊+

𝑛

∑

𝑗=𝑔+1
𝑤
󸀠󸀠

𝑗
𝑥
𝑖𝑗
. (20)

Based on the IIFWA operator definition, (18) was repre-
sented as

𝑦
󸀠

𝑖
=

1
𝑊−

IIFWA
𝑊
+ (𝑥
𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑔)

−
1
𝑊+

IIFWA
𝑊
− (𝑥
𝑖𝑔+1, 𝑥𝑖𝑔+2, . . . , 𝑥𝑖𝑛) .

(21)

Themultiplication of 1/(𝑊−) and 1/(𝑊+)was performed
using (9). In addition, the subtraction of two IVIFNs in
(21) was performed by applying (16). 𝑦󸀠

𝑖
, 𝑖 = 1, 2, . . . , 𝑚, is

relative significance of the alternative 𝑖. The comparison of
𝑦
󸀠

𝑖
, 𝑖 = 1, 2, . . . , 𝑚, values based on the score and the accuracy

function resulted in the ranking of the alternatives based on
the ratio system.
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5.3. The IVIF-Reference Point Portion of the MOORAMethod.
According to the second part of the MOORA, the maximal
objective reference point approach was used. The desirable
ideal alternative in the IVIF environment was the IVIF vector
with the coordinates 𝑟

𝑗
, 𝑗 = 1, 2, . . . , 𝑛, which was formed by

selecting the data from every considered decision alternative
and taking into account the optimization direction of every
particular criterion. To find the reference point based on the
idea of the TOPSIS method, the weighted decision matrix
𝑁̃ = [𝑛

𝑖𝑗
] = 𝑊 ⋅ 𝑋 was constructed first, where

𝑛
𝑖𝑗
= ([𝜂
𝑙

𝑖𝑗
, 𝜂
𝑢

𝑖𝑗
] , [𝛿
𝑙

𝑖𝑗
, 𝛿
𝑢

𝑖𝑗
]) = 𝑤

𝑗
𝑥
𝑖𝑗
. (22)

The scalar multiplication was performed by applying (9).
Then, for benefit criteria, 𝐶1, 𝐶2, . . . , 𝐶𝑔, the reference point
was constructed as follows:

𝑟
𝑗
= ([𝜂
∗𝑙

𝑖𝑗
, 𝜂
∗𝑢

𝑖𝑗
] , [𝛿
∗𝑙

𝑖𝑗
, 𝛿
∗𝑢

𝑖𝑗
])

= ([max
1≤𝑖≤𝑚

(𝜂
𝑙

𝑖𝑗
) , max

1≤𝑖≤𝑚
(𝜂
𝑢

𝑖𝑗
)] ,

[min
1≤𝑖≤𝑚

(𝛿
𝑙

𝑖𝑗
) , min

1≤𝑖≤𝑚
(𝛿
𝑢

𝑖𝑗
)]) ,

(23)

and for cost criteria, 𝐶
𝑔+1, 𝐶𝑔+2, . . . , 𝐶𝑛,

𝑟
𝑗
= ([𝜂
∗𝑙

𝑖𝑗
, 𝜂
∗𝑢

𝑖𝑗
] , [𝛿
∗𝑙

𝑖𝑗
, 𝛿
∗𝑢

𝑖𝑗
])

= ([min
1≤𝑖≤𝑚

(𝜇
𝑙

𝑖𝑗
) , min

1≤𝑖≤𝑚
(𝜇
𝑢

𝑖𝑗
)] ,

[max
1≤𝑖≤𝑚

(V𝑙
𝑖𝑗
) , max

1≤𝑖≤𝑚
(V𝑢
𝑖𝑗
)]) .

(24)

Then, the Min-Max metric of Tchebycheff [26] was used
for ranking the alternatives:

Min
1≤𝑖≤𝑚

{max
1≤𝑗≤𝑛

󵄨󵄨󵄨󵄨󵄨
𝑟
𝑗
−𝑥
𝑖𝑗
𝑤
𝑗

󵄨󵄨󵄨󵄨󵄨
} . (25)

Based on (22)–(24), (25) could be simplified. The fol-
lowing steps were taken to determine the rankings of the
alternatives, using the reference point approach.

Step 1. Compute for each alternative 𝐴
𝑖
, 𝑖 = 1, 2, . . . , 𝑚, the

score function in the weighted decision matrix:

𝑆 (𝑛
𝑖𝑗
) = 𝜂
𝑙

𝑖𝑗
− 𝛿
𝑙

𝑖𝑗
+ 𝜂
𝑢

𝑖𝑗
− 𝛿
𝑢

𝑖𝑗
. (26)

Step 2. Compute the score function of the reference points:

𝑆 (𝑟
𝑗
) = 𝜂
∗𝑙

𝑖𝑗
− 𝛿
∗𝑙

𝑖𝑗
+ 𝜂
∗𝑢

𝑖𝑗
− 𝛿
∗𝑢

𝑖𝑗
. (27)

Step 3. Find the maximum deviation from the reference
points:

𝑑
𝑖
= max

1≤𝑗≤𝑛

󵄨󵄨󵄨󵄨󵄨
𝑟
𝑗
−𝑥
𝑖𝑗
𝑤
𝑗

󵄨󵄨󵄨󵄨󵄨
= max

1≤𝑗≤𝑛

󵄨󵄨󵄨󵄨󵄨
𝑆 (𝑟
𝑗
) − 𝑆 (𝑛

𝑖𝑗
)
󵄨󵄨󵄨󵄨󵄨
. (28)

Step 4. Rank the alternatives in the ascending order of 𝑑
𝑖
, 𝑖 =

1, 2, . . . , 𝑚.

5.4. The IVIF-Full Multiplicative Form. Finally, the full mul-
tiplicative form was applied as follows:

𝑈̃
𝑖
=
𝐴
𝑖

𝐵
𝑖

, (29)

where 𝑈̃
𝑖
denotes the overall utility of the alternative 𝑖, and

𝐴
𝑖
=

𝑔

∏

𝑗=1
𝑤
𝑗
𝑥
𝑖𝑗
,

𝐵
𝑖
=

𝑛

∏

𝑗=𝑔+1
𝑤
𝑗
𝑥
𝑖𝑗
.

(30)

Multiplication of a set of IVIFNs was performed by
sequentially applying (8). To give a compact form of this
multiplication, it was supposed that 𝑥

𝑖𝑗
, 𝑗 = 1, 2, . . . , 𝑔, was

determined as an IVIFN as indicated in (17). First, 𝑛
𝑖𝑗

=

𝑤
𝑗
𝑥
𝑖𝑗
, 𝑗 = 1, 2, . . . , 𝑔, was formed by applying (9) in the same

manner as previously performed in (22). Then,

𝐴
𝑖
=

𝑔

∏

𝑗=1
𝑛
𝑖𝑗
= ([𝜂

𝑙

𝑖𝑗
, 𝜂
𝑙

𝑖𝑗
] , [𝛿
𝑙

𝑖𝑗
, 𝛿
𝑢

𝑖𝑗
])

= ([

[

𝑔

∏

𝑗=1
𝜂
𝑙

𝑖𝑗
,

𝑔

∏

𝑗=1
𝜂
𝑢

𝑖𝑗
]

]

,
[
[
[

[

𝑔

∑

𝑗=1
𝛿
𝑙

𝑖𝑗
− ∑

𝑗1<𝑗2
𝑗1 ,𝑗2∈{1,2,...,𝑔}

𝛿
𝑙

𝑖𝑗1
⋅ 𝛿
𝑙

𝑖𝑗2

+ ⋅ ⋅ ⋅ + (−1)𝑘+1 ∑

𝑗1<𝑗2<⋅⋅⋅<𝑗𝑘
𝑗1 ,𝑗2 ,...,𝑗𝑘∈{1,2,...,𝑔}

(𝛿
𝑙

𝑖𝑗1
⋅ 𝛿
𝑙

𝑖𝑗2
⋅ ⋅ ⋅ 𝛿
𝑙

𝑖𝑗𝑘
) + ⋅ ⋅ ⋅

+ (−1)𝑔+1 (𝛿𝑙
𝑖1 ⋅ 𝛿
𝑙

𝑖2 ⋅ ⋅ ⋅ 𝛿
𝑙

𝑖𝑔
) ,

𝑔

∑

𝑗=1
𝛿
𝑢

𝑖𝑗

− ∑

𝑗1<𝑗2
𝑗1 ,𝑗2∈{1,2,...,𝑔}

𝛿
𝑢

𝑖𝑗1
⋅ 𝛿
𝑢

𝑖𝑗2
+ ⋅ ⋅ ⋅

+ (−1)𝑘+1 ∑

𝑗1<𝑗2<⋅⋅⋅<𝑗𝑘
𝑗1 ,𝑗2 ,...,𝑗𝑘∈{1,2,...,𝑔}

(𝛿
𝑢

𝑖𝑗1
⋅ 𝛿
𝑢

𝑖𝑗2
⋅ ⋅ ⋅ 𝛿
𝑢

𝑖𝑗𝑘
) + ⋅ ⋅ ⋅

+ (−1)𝑔+1 (𝛿𝑢
𝑖1 ⋅ 𝛿
𝑢

𝑖2 ⋅ ⋅ ⋅ 𝛿
𝑢

𝑖𝑔
)
]
]
]

]

) .

(31)

Then 𝐵
𝑖
, 𝑖 = 1, 2, . . . , 𝑚, was also calculated in a similar

way. Then, 𝑈̃
𝑖
, 𝑖 = 1, 2, . . . , 𝑚, was determined by (10) for

division. The ranking of the alternatives was specified by
calculating the score functions 𝑆(𝑈̃

𝑖
), 𝑖 = 1, 2, . . . , 𝑚, and

ranking them in a descending order.
Applying three distinct parts of MULTIMOORA, three

sets of rankings of the alternatives were determined. The
obtained rankings formed a ranking pool, based onwhich the
final ranking of the alternatives could be determined. To find
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(i) Theory of dominance
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Define the set A

Find ỹ
󳰀

i
, i = 1, 2, . . . , m

S(ỹ
󳰀

i
), i = 1, 2, . . . , m

Find Ũi, i = 1, 2, . . . , m

di, i = 1, 2, . . . , m

S(Ũi), i = 1, 2, . . . , m

Figure 1: The IVIF-MULTIMOORA algorithm.

the final ranking of the alternatives, the theory of dominance
[46] could be used. Also, the techniques, such as the Borda
countmethod [63] orCopeland pairwise aggregationmethod
[64], could be applied to determine the final ranking of the
alternatives.

5.5. The IVIF-MULTIMOORA Algorithm. MULTIMOORA
is the extension of the MOORA method and the full mul-
tiplicative form of multiple-objective. The distinct parts of
the MULTIMOORA method are presented in Sections 5.1 to
5.3. The algorithmic scheme of MULTIMOORA is presented

in the current section. The IVIF-MULTIMOORA algorithm
includes five different stages: (1) initialization, (2) IVIF-
ratio system, (3) IVIF-reference point approach, (4) IVIF-full
multiplicative form, and (5) final ranking. These stages are
presented in Figure 1.

6. A Numerical Example

In this section, two applications of the proposed method
are presented and the results are compared to the rankings
yielded by other multiple criteria decision making methods.
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Table 1: Decision matrix of rational revitalization of derelict and mismanaged buildings.

Criteria Optimization direction Weight A1 A2 A3

𝑥1 Max 0.0600 ([0.70, 0.80], [0.10, 0.15]) ([0.45, 0.60], [0.20, 0.30]) ([0.30, 0.40], [0.45, 0.50])
𝑥2 Min 0.0727 ([0.60, 0.70], [0.15, 0.20]) ([0.45, 0.55], [0.20, 0.30]) ([0.25, 0.40], [0.45, 0.55])
𝑥3 Max 0.0747 ([0.75, 0.80], [0.10, 0.15]) ([0.45, 0.55], [0.25, 0.35]) ([0.30, 0.40], [0.40, 0.50])
𝑥4 Max 0.0627 ([0.80, 0.90], [0, 0.05]) ([0.50, 0.65], [0.15, 0.25]) ([0.35, 0.50], [0.30, 0.40])
𝑥5 Max 0.0673 ([0.70, 0.85], [0.05, 0.10]) ([0.55, 0.65], [0.20, 0.25]) ([0.35, 0.45], [0.30, 0.40])
𝑥6 Max 0.0627 ([0.75, 0.85], [0.10, 0.15]) ([0.55, 0.65], [0.20, 0.25]) ([0.35, 0.45], [0.30, 0.40])
𝑥7 Min 0.0667 ([0.80, 0.85], [0.10, 0.15]) ([0.45, 0.55], [0.25, 0.35]) ([0.15, 0.35], [0.40, 0.50])
𝑥8 Max 0.0667 ([0.85, 0.90], [0, 0.05]) ([0.20, 0.35], [0.35, 0.50]) ([0.10, 0.15], [0.75, 0.80])
𝑥9 Max 0.0667 ([0.80, 0.90], [0, 0.05]) ([0.10, 0.25], [0.55, 0.65]) ([0.05, 0.10], [0.80, 0.85])
𝑥10 Max 0.0667 ([0.45, 0.60], [0.25, 0.35]) ([0.10, 0.25], [0.55, 0.65]) ([0.05, 0.10], [0.80, 0.85])
𝑥11 Max 0.0667 ([0.75, 0.80], [0.10, 0.15]) ([0.15, 0.30], [0.30, 0.50]) ([0.05, 0.10], [0.75, 0.85])
𝑥12 Max 0.0667 ([0.75, 0.85], [0.05, 0.10]) ([0.25, 0.40], [0.20, 0.40]) ([0.70, 0.80], [0.10, 0.15])
𝑥13 Min 0.0667 ([0.70, 0.85], [0.05, 0.10]) ([0.10, 0.15], [0.75, 0.80]) ([0.50, 0.55], [0.35, 0.40])
𝑥14 Min 0.0667 ([0.70, 0.80], [0.10, 0.15]) ([0.50, 0.55], [0.30, 0.40]) ([0.10, 0.15], [0.70, 0.80])
𝑥15 Max 0.0667 ([0.60, 0.75], [0.15, 0.20]) ([0.45, 0.60], [0.20, 0.30]) ([0.25, 0.45], [0.25, 0.40])

6.1.The First Example. Zavadskas et al. [36] solved a problem
of rational revitalization of derelict and mismanaged build-
ings in Lithuanian rural areas. Three alternatives included
the reconstruction of rural buildings and their adaptation to
production (or commercial) activities (𝐴

1
), as well as their

improvement and use for farming (𝐴
2
) or dismantling and

recycling the demolition waste materials (𝐴
3
). The following

criteriawere taken into consideration: the average soil fertility
in the area𝑥

1
(points), quality of life of the local population𝑥

2

(points), population activity index 𝑥
3
(%), GDP proportion

with respect to the average GDP of the country 𝑥
4
(%),

material investment in the area 𝑥
5
(LTL per resident), foreign

investments in the area 𝑥
6
(LTL × 103 per resident), building

redevelopment costs 𝑥
7
(LTL × 106), increase in the local

population’s income 𝑥
8
(LTL × 106 per year), increase in sales

in the area𝑥
9
(%), increase in employment in the area𝑥

10
(%),

state income from business and property taxes 𝑥
11
(LTL × 106

per year), business outlook 𝑥
12
, difficulties in changing the

original purpose of the site 𝑥
13
, the degree of contamination

𝑥
14
, and the attractiveness of the countryside (i.e., image and

landscape) 𝑥
15
.

A decision matrix is presented in Table 1.
This problem was solved with the proposed IVIF-

MULTIMOORA method as follows.

6.1.1. Ratio System. In the ratio system ranking, the relative
importance (significance) of the alternatives was determined
by (21). For this purpose, initially, the benefit criteria,
including 𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
, 𝑥
8
, 𝑥
9
, 𝑥
10
, 𝑥
11
, 𝑥
12
, and 𝑥

15
,

were separated from the cost criteria, including 𝑥
7
, 𝑥
13
, and

𝑥
14
.Then, the aggregations of the benefit criteriaweights,𝑊+,

and cost criteria weights,𝑊−, were computed. These weights
were then used in (21), and the values of 𝑦󸀠

𝑖
, 𝑖 = 1, 2, 3, were

calculated as follows:

𝑦
󸀠

1
= ([0.285, 0.363] , [0.531, 0.602]) ,

𝑦
󸀠

2
= ([0.110, 0.136] , [0.787, 0.833]) ,

𝑦
󸀠

3
= ([0.077, 0.110] , [0.824, 0.858]) .

(32)
Ranking these values according to their score functions

led to the ranking of the alternatives as 𝐴1 ≻ 𝐴2 ≻ 𝐴3.

6.1.2. Reference Point Approach. Ranking of the alternatives
in this approach was initialized by determining a reference
point from the weighted decision matrix.Then, the deviation
of each alternative from the reference point was computed by
(28).These deviationswere as follows:𝑑1 = 0.468,𝑑2 = 1.332,
and 𝑑3 = 1.391. By ranking the alternatives in the descending
order of deviations, the final ranking was determined as𝐴1 ≻
𝐴2 ≻ 𝐴3.

6.1.3. Full Multiplicative Form. In applying the third part of
themethod, the full multiplicative approach was used to rank
the alternatives.Using (30), themultiplicative forms of benefit
and cost criteria were obtained. These multiplicative forms
were constructed by sequential multiplication of a set of
IVIFNs.The overall utility of the alternatives was determined
as follows:

𝑈̃1 = ([6.010𝐸− 14, 2.028𝐸− 12] , [9.999999825𝐸

− 1, 9.9999999998𝐸− 1]) ,

𝑈̃2 = ([4.127𝐸− 20, 2.310𝐸− 17] ,

[9.99999999999909𝐸− 1, 9.99999999999998𝐸

− 1]) ,

𝑈̃3 = ([0, 0] , [1, 1]) .

(33)

Ranking these values according to their score functions
led to ranking of the alternatives as 𝐴1 ≻ 𝐴2 ≻ 𝐴3.
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Table 2: IVIF-MULTIMOORA ranking of the alternatives.

Alternatives IVIF-MOORA ratio system IVIF-MOORA reference point IVIF-full multiplicative form IVIF-MULTIMOORA
𝐴1 1 1 1 1
𝐴2 2 2 2 2
𝐴3 3 3 3 3

Table 3: Ranking of the alternatives by applying different methods.

Alternatives IFOWA TOPSIS-IVIF COPRAS-IVIF WASPAS-IVIF IVIF-MULTIMOORA
𝐴1 1 1 1 1 1
𝐴2 2 2 3 2 2
𝐴3 3 3 2 3 3

Table 4: IVIF decision matrix for investment alternatives.

𝐶1 𝐶2 𝐶3 𝐶4

𝐴1 ([0.42, 0.48], [0.4, 0.5]) ([0.6, 0.7], [0.05, 0.025]) ([0.4, 0.5], [0.2, 0.5]) ([0.55, 0.75], [0.15, 0.25])
𝐴2 ([0.4, 0.5], [0.4, 0.5]) ([0.5, 0.8], [0.1, 0.2]) ([0.3, 0.6], [0.3, 0.4]) ([0.6, 0.7], [0.1, 0.3])
𝐴3 ([0.3, 0.5], [0.4, 0.5]) ([0.1, 0.3], [0.2, 0.4]) ([0.7, 0.8], [0.1, 0.2]) ([0.5, 0.7], [0.1, 0.2])
𝐴4 ([0.2, 0.4], [0.4, 0.5]) ([0.6, 0.7], [0.2, 0.3]) ([0.5, 0.6], [0.2, 0.3]) ([0.7, 0.8], [0.1, 0.2])

Table 5: IVIF-MULTIMOORA ranking of the investment alternatives.

Alternatives IVIF-MOORA ratio system IVIF-MOORA reference point IVIF-full multiplicative form IVIF-MULTIMOORA
𝐴1 3 2 3 3
𝐴2 4 1 4 4
𝐴3 1 4 1 1
𝐴4 2 3 2 2

Table 6: Ranking of the investment alternatives by applying different methods.

Alternatives Wang et al. IFOWA TOPSIS-IVIF COPRAS-IVIF WASPAS-IVIF IVIF-MULTIMOORA
𝐴1 3 4 2 3 3 3
𝐴2 4 3 4 4 4 4
𝐴3 2 1 1 2 1 1
𝐴4 1 2 3 1 2 2

The three sets of rankings are summarized in Table 2.The
final ranking was obtained by using the dominance theory in
the last column of the table.

Table 3 also presents the rankings obtained by some
differentmethods, including IFOWA [62], TOPSIS-IVIF [19],
COPRAS-IVIF [31], and WASPAS-IVIF [36].

Kendall’s coefficient of concordance in Table 3 is 0.840,
which shows a high degree of concordance. Moreover, there
is complete coincidence among the IVIF-MULTIMOORA
method and the other three methods. These facts imply that
there is great homogeneity between IVIF-MULTIMOORA
and other methods.

6.2.The SecondExample. Consider the problemof appraising
four different investment alternatives {𝐴1, 𝐴2, 𝐴3, 𝐴4} based
on four criteria of risk (𝐶

1
), growth (𝐶

2
), sociopolitical issues

(𝐶
3
), and environmental impacts (𝐶

4
). The vector of criteria

significance is (0.13, 0.17, 0.39, 0.31). Also, 𝐶
1
and 𝐶

3
were

considered as cost criteria, while 𝐶
2
and 𝐶

4
were benefit

criteria. The problem was initially formulated by Wang et al.
[51] as the decision matrix which is given below (Table 4).

The above problem was solved by using the proposed
IVIF-MULTIMOORAmethod.The results obtained by using
the ratio system, the reference point approach, and the full
multiplicative form are presented in Table 5. Moreover, the
final ranking obtained based on the dominance theory is
presented in the last column of the table.

The results obtained by solving the above problem by
different methods, including the method of Wang et al. [51],
IFOWA [62], TOPSIS-IVIF [19], COPRAS-IVIF [31], and
WASPAS-IVIF [36], are presented in Table 6.

In this case, Kendall’s coefficient of concordance is 0.766,
which shows a high degree of concordance, compared to the
critical value of 0.421 [65]. Spearman’s rank correlation is
used to demonstrate the similarity between different rank-
ings. Table 7 shows Spearman’s rank correlation between the
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Table 7: Ranking similarity of the investment alternatives by applying different methods.

Methods Wang et al. IFOWA TOPSIS-IVIF CORAS-IVIF WASPAS-IVIF IVIF-MULTIMOORA
Wang et al. [51] — 0.6 (0%) 0.4 (25%) 1 (100%) 0.8 (50%) 0.8 (50%)
IFOWA — 0.4 (25%) 0.6 (0%) 0.8 (50%) 0.8 (50%)
TOPSIS-IVIF — 0.4 (25%) 0.8 (50%) 0.8 (50%)
CORAS-IVIF — 0.8 (50%) 0.8 (50%)
WASPAS-IVIF — 1 (100%)
IVIF-MULTIMOORA —

consideredmethods.Thepercentages specified in parenthesis
in Table 7 show the matched ranks obtained by using the
considered five methods with ranks of Wang et al. [51]
method as the percentages of the matched alternatives.

Based on the above findings, it can be concluded that,
except for COPRAS-IVIF, which completely matches the
method of Wang et al. [51], the IVIF-MULTIMOORA, along
with WASPAS-IVIF, has the highest similarity (reaching
80%) to all other methods. Moreover, the percentage of the
matched rankings with those of Wang, Li, and Wang is 50%,
which is the second high value of congruence. These results
have shown great similarity of IVIF-MULTIMOORA to other
methods, which can be considered to be one of its advantages.

7. Discussion

Vincke [66] believes that the main difficulty in solving
multiple criteria decision making problems lies in the fact
that, usually, there is no optimal solution to such a problem,
which could dominate other solutions in all the criteria.

As a response to this dilemma, variousmethods have been
proposed for solving MCDM problems. The selection of the
most appropriate and the most robustly and effectively use-
able method is a continuous object of scientific discussions
for decades [67, 68].

This means that the experts usually look for Pareto
optimal solution. Therefore, while an optimal solution is
obtained by several methods, this emphasizes that proposed
method will achieve the near to optimum answer. In this
regard, MULTIMOORAmethod has a strong advantage over
the other methods as it summarizes three approaches. The
robustness of the aggregated approach has been substantiated
in the previous research [47].

On the other hand, the above-mentioned difficulty may
be considered from two additional perspectives. First, the
uncertainty of decision maker in his judgments should be
taken into consideration. To deal with this challenge, several
frameworks have been introduced, starting from application
of Zadeh fuzzy numbers [6] and followed by numerous
extensions of decision making methods using type 1 and type
2 fuzzy sets, involving interval-valued as well as intuitionistic
fuzzy sets [69]. The extensions of the considered MULTI-
MOORAmethod till 2013were summarized in a reviewpaper
[13]. The most recent extensions not covered by [13] should
also be mentioned [14–17]. Seeking the best imagination
of uncertainty, another up-to-date extension, namely, the

interval-valued intuitionistic fuzzy MULTIMOORAmethod
is presented in the current research.

Second, decisions are usually made by several decision
makers. This makes it necessary to consider a suitable
procedure to aggregate the opinions. Therefore, this problem
is handled as a group decision making problem.

As it is not easy to prove that a newly proposed method
is applicable, it is useful to test it in solving several multiple
criteria problems. To make sure that the method is better or
at least it is not worse than the other existing methods, it is
appropriate to apply several related approaches to compare
their ranking results for the same problem [70]. Accordingly,
two illustrative examples have been presented to fulfill the
task. It is encouraging that the results have shown great
similarity of IVIF-MULTIMOORA to other methods. The
fact can be considered to be one of advantages of the novel
approach.

8. Conclusions and Future Work

In the current paper, the interval-valued intuitionistic fuzzy
MULTIMOORA method is proposed for solving a group
decision making problem under uncertainty. The IVIF is a
generalized form of fuzzy sets which considers the nonmem-
bership of objects in a set beside their membership and with
respect to hesitancy of decision makers.

TheMULTIMOORAmethod is a decisionmaking proce-
dure composed of three parts, including the ratio system, the
reference point approach, and full multiplicative form. The
rankings yielded by this method are finally aggregated, and a
unique ranking is determined.

The proposed algorithm benefits from the abilities of
IVIFSs to be used in imagination of uncertainty and MUL-
TIMOORA method to consider three different viewpoints
in analyzing decision alternatives. The application of the
proposed method is illustrated by two numerical exam-
ples and the obtained results are compared to the results
yielded by other methods of decision making with IVIF
information. The comparison, using Kendall coefficient of
concordance and Spearman’s rank correlation, has shown a
high consistency between the proposedmethod and the other
approaches that verifies the proposed method can be applied
in case of similar problems in ambiguous and uncertain situ-
ation. This advantage strengthens the applicability of IVIF-
MULTIMOORA as a method for group decision making
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under uncertainty when solving engineering technology and
management complex problems.

Future directions of the research will be focused on
searching modifications of the method, the best reflecting
uncertain environment, and producing the most reliable
results. At the moment two novel and up-to-date possi-
ble extensions of the MULTIMOORA method could be
suggested. One of the approaches could be based on the
neutrosophic sets [71, 72] that are a generalization of the fuzzy
and intuitionistic fuzzy sets. The other possible approach
could be to apply 𝐷 numbers that were recently proposed to
handle uncertain information [73, 74].
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