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(1984) or Lennox (1999) was also tested more or less 
simultaneously. A number of other methods followed, 
some of which were able to increase the predictive 
power of the bankruptcy model.

Among the newest tested methods are artificial 
neural networks, for example models of Tam and Kiang 
(1992). According to the findings of the authors Chih-
Fondg and Chihli (2014) or Kim and Park (2012), this 
method can create prediction models that are several 
percent more accurate than older methods. The prob-
lem, however, is that the algorithm of these models is 
unknown, respectively its form is purely electronic and 
therefore such models are difficult to disseminate and 
verifiable by the professional public.

Regionally broad universal models are also cre-
ated, for example for the whole of Europe, Asia, South 
America and others, for example models by the au-
thors of Alaminos et  al. (2016); Eling and Jia (2018); 
Jones (2017); Jones and Wang (2019).

Most authors of bankruptcy models have conclud-
ed that a model achieves greater accuracy if it is cre-
ated for a specific region. And not only specific market 
conditions play a role. Kuběnka and Myšková (2022) 
claim that different accounting systems in different 
countries affect the structure of financial data as well 
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1. Introduction and literature background

There has always been an effort to estimate the imminent 
bankruptcy of the company. Such information can be of 
great benefit and allows management to take preventive 
measures in time and business partners to consider co-
operation with a risky partner. The reason is that in the 
field of business, ignorance and unpreparedness can lead 
to the end of a successful business.

Therefore, models for predicting financial distress 
have been developing since the first half of the 20th 
century. Of course, this has to do with the widespread 
use of accounting as a basic source of information for 
bankruptcy models. However, they only came to the 
attention of the professional public thanks to Beaver 
(1966) and especially Altman (1968), who created his 
world-famous bankruptcy prediction model called Z 
score and thus popularized the issue of bankruptcy 
models.

Various methods for creating models were gradu-
ally tried. Beaver and Altman used multiple discrimi-
nant analysis method. Next followed, for example, logit 
analysis, which was first used by Ohlson (1980), later, 
for example, by Platt et al. (1994) or Wang (2004). Pro-
bit analysis applied by Hanweck (1977) or Zmijewski 
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as the value of accounting items (also Charalambous 
et al., 2020; Jabeur, 2017; Mousavi et al., 2019). This is 
also confirmed by other authors (Honková & Výbora, 
2015), who claim that accounting systems operate on 
the basis different rules that are established in the leg-
islation of the given country. That is why accounting 
systems in different countries show certain differences 
(Honková, 2015).

Regional models, respectively models focused on a 
specific state, are the majority. Therefore, this study will 
also focus on testing the accuracy of regional models, 
specifically models created in the Czech Republic or 
Slovak Republic because the economy and accounting 
systems are very close to each other. The authors base 
this on the fact that the accuracy of the models is re-
ported for their ability to predict bankruptcy 1 year in 
advance. In fact, the information needed to apply the 
model is usually available only in the third or fourth 
quarter after the end of the financial year of the tested 
company. Therefore, reporting model accuracy on an 
annual basis is inappropriate.

From the point of view of applicability, it is there-
fore advisable to follow the accuracy of the model on 
a two-year basis. Evaluating the accuracy of the model 
on a two-year basis has not yet been a subject of inter-
est for experts, yet some of the authors of the models 
analyzed the prediction power in a period of several 
years before bankruptcy. Usually, they found that as 
the number of years preceding bankruptcy increases, 
the accuracy of the model decreases (see e.g., Jabeur, 
2017; Karas & Režňáková, 2014; Zhang et al., 2010).

However, even these analysts, when creating their 
models, constructed the model in such a way as to 
maximize the accuracy of the prediction for 1 year 
ahead and not for 2 years ahead. This ensured the 
maximum accuracy of the model, but unfortunately 
with a time usage of several months. The authors as-
sume that analysts in the Czech Republic are not the 
only ones with a similar problem with the time avail-
ability of models.

The aim of this analysis was to identify which of the 
latest Czech od Slovak models is the most precise in 
bankrupt prediction in a 2-year time horizon.

2. Data, methodology, and models

2.1. Data

The authors used 7 of the latest publicly available mod-
els, which have been created in the Czech Republic or 
Slovakia.

Selected bankruptcy models were tested on a sample 
of 823 financially stable enterprises (did not show signs 
of financial problems at time t + 2), the structure of this 
sample is in Table 1 and 138 bankrupt enterprises (went 
bankrupt at time t + 2), the structure of this sample is 
in Table 2. So, a total of 961 enterprises operating in the 
Czech Republic in the processing industry. Therefore 
their 2016–2019 financial statements were used. These 

enterprises were in 2019 either bankrupt or financially 
stable. Data were gathered from the Bisnode’s Mag-
nusWeb (2024) database.

Table 1. Sample structure of non-bankrupt companies 
(2-years horizon) (source: own data processing from Bisnode’s 
MagnusWeb, 2024)

Min Average Median Max

Assets 111 090 1 059 148 571 843 16 440 868
Equity 9578 537 918 267 753 7 168 654
Sales 224 907 1 354 973 738 270 15 810 200
ROE –31.75% 29.71% 24.77% 190.72%
ROA –10.92% 8.53% 6.70% 53.36%
Liquidity L3 0.47 2.08 1.51 16.03
Asset 
turnover 0.46 1.58 1.40 5.14

Total 
indebtedness 10.03% 51.07% 51.12% 95.73%

Table 2. Sample structure of bankrupt companies (2-years 
horizon) (source: own data processing from Bisnode’s 
MagnusWeb, 2024)

Min Average Median Max

Assets 308 90 173 25 100 1 268 545
Equity –1 148 908 –8 788 648 105 183
Sales –17 184 83 562 32 544 828 307
ROE –163.64 63.30% 22.68% 244.23%
ROA –50.91% –6.77% 1.10% 18.07%
Liquidity L3 0.01 0.91 0.77 2.13
Asset turnover 0.00 1.62 1.27 11.73
Total 
indebtedness 37.64% 119.38% 94.12% 257.75%

2.2. Methodology

The predictive power of the models will be evaluated us-
ing the standard methodology used for example in Hui-
juan (2015) or Berzkalne and Zelgalve (2013).

The model indicates an enterprise as bankrupt or 
non-bankrupt in a 1-year or more time horizon. For us, 
it is crucial to monitor which models have the greatest 
accuracy not only over a 1-year, but also over a 2-year 
time horizon. From this point of view (Table 3), four 
combinations of the successfulness of prediction can oc-
cur. The Table 3 presents them.

Table 3. Method of prediction power evaluation (source: own 
processing)

Prediction

Bankrupt Non-bankrupt

Fact
Bankrupt TRUE I. ERROR I.
Non-bankrupt ERROR II. TRUE II.

Accuracy of prediction could be consequently evalu-
ated separately in two areas. As success rate of bankruptcy 
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prediction for the financially unstable (bankrupt) enter-
prises, we can express the accuracy as follows.

Success Rate of Bankruptcy 

( TRUE I.)
TRUE I. ERROR I.

SRB =
+

.    (1)

As success rate of non-bankruptcy prediction for the 
financially stable enterprises, we can express it as follows:

Success Rate of Non-bankruptcy 

( ) TRUE II. .
ERROR II. TRUE II.

SRN =
+

  (2)  

So, the total success rate (TSR) of a concrete model 
can be calculated as an arithmetical average of SRB and 
SRN as follows.

Total Success Rate SRB SRN( )
2

TSR +
=  .    (3)

Comparison of the 2-years and 1-years accuracy of 
SRB and SRN will be performed with taking into account 
a possible error in relation to the sample size. For this 
purpose, confidence intervals of the 2-year determined 
values of SRB and SRN will be also calculated. Accord-
ing to Kuběnka (2018), the confidence interval can be 
calculated as follows:
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where: p – determined 2-year SRB or SRN of a model; 
n – size of the base (size of the tested sample); α – eter-
mined at the level of 5%, 

1  
2

z ∝
−

 – is the quantile of nor-
mal distribution.

2.3. Models

The authors set themselves the goal of testing the predic-
tive power of 7 Czech or Slovak bankruptcy models on 
a sample of Czech businesses. These models will then be 
evaluated according to their ability to predict bankruptcy 
1 year and especially 2 years before this negative event.

Pj model
Kuchina created Pj model in 2013 using logit regres-

sion using data from 94 bankrupt businesses and 94 
financially healthy businesses. According to Kuchina 
(2013), the model contains four share indicators and is 
defined by the following equation:

    Pj = ( )1 2 3 42.337 7.958 0.568 6.744 0.521
1 ,

1 e

i

X X X X

P

− − − − +

=

+
    (5)

where: X1 – EBIT / total assets; X2 – revenues / total as-
sets; X3 – retained earnings / total assets; X4 – net work-
ing capital / liabilities.

According to the author, the overall prediction suc-
cess rate of the model is 89.7% one year before bank-
ruptcy and 75.8% two years before bankruptcy.

Ycz model
Model was created in 2018 by team consists of 

Klieštik, Vrbka and Rowland. They named the model as 
the model Ycz. The authors applied a multiple discrimi-
nant analysis when creating the work. They analysed a 
total of 62,794 Czech enterprises, of which 50,058 were 
financially stable and 12,736 were insolvent. These com-
panies come from different branches (in the fields of 
commerce, production and services). The model created 
uses 10 variables. The authors note that the total accu-
racy of the model is 84.8%. The model is formulated in 
this equation (Klieštik et al., 2018):

czY = −1.016 + 0.007 2Y  −0.884 4Y  +2.168 7Y  
−0.343 8Y  +2.526 10Y  +0.416 12Y  −0.592 21Y  
−2.561 27Y  +0.352 28Y  −1.075 35Y ,   (6)

where: Y2  – current assets / current liabilities; Y4 – net 
income / equity; Y7 – earnings after taxes / total assets; 
Y8 – working capital / total assets; Y10 – liabilities / total 
assets; Y12 – cash & cash equivalents / total assets; Y21 – 
non-current liabilities / total assets; Y27 – EBIT / total 
assets; Y28 – EAT / equity; Y35 – EBIT / sales.

V4 model
The same authors created another model usable for 

V4, which was based on the data of tens of thousands 
of enterprises from the states in the V4 grouping, i.e., 
Slovakia, Hungary, Poland and the Czech Republic. It is 
therefore a universal, or a more widely usable model than 
the Ycz model. According to (Klieštik et al., 2018), the V4 
model equation is this:

V4 = –1.470 + 0.024Y2 – 0.589Y4 – 1.158Y7 + 
1.870Y10 – 0.452Y11 + 0.613Y12 + 1.030Y15 – 
0.012Y22 + 0.731Y27 + 0.173Y28 – 0.475Y35 + 
0.244CZ + 0.522SK, (7)

where: Y11 – current assets / total assets; Y15 – current 
liabilities / total assets; Y22 – cash / current liabilities; 
CZ = 1, SK = 0.

The authors report an overall V4 model prediction 
accuracy of 85.7%.

Model 1
The Model 1 was created by Slavíček and Kuběnka 

(2016). They used only 33 companies to create the mod-
el, 11 of them were bankrupt. This is unequivocally the 
smallest sample of the evaluated models, nevertheless, 
the model is among the most accurate, as will be seen 
later. Logistic regression was used to create. The model 
operates on 4 variables. According to the authors, the 
accuracy of bankruptcy predictions was 91% and the ac-
curacy of non-bankruptcy predictions 95%.



The actual predictive power of bankruptcy models in terms of time use

441

Model 1 = 0.0173 1V  − 4.7107 2V  + 0.0412 3V  + 
0.0918 4V  − 7.5378,  (8)

where: V1 – inventories / (sales / 360); V2 – financial 
property / current liabilities; V3 – operating profit / total 
assets × 100; V4 – (liabilities / total assets) × 100.

Pav model
In 2015, Pavlík created a model for one-year predic-

tion. The authors did not set the name, we will call it the 
Model Pav. The author specifies the total accuracy of the 
model as 83.97%. The author used the logistic regres-
sion for the creation of the model. 2,061 enterprises were 
tested for the model construction within the period from 
2005 to 2013. The model works with six variables. 

The equation of the model according to Pavlík (2015) 
is:

Model Pav = 

( )0.0068 0.5160 3 0.0559 9 0.6346 14 3.8307 17 1.1347 19 0.0016 29
1 ,

1 e R R R R R R− − − + − − −+
 

 (9)

where: R3 – current assets / current liabilities; R9 – to-
tal assets / equity; R14 – foreign resources / total assets; 
R17 – cash flow / external sources; R19 – equity / liabili-
ties; R29 – financial assets x 360 / sales.

Model DA
In 2016, the authors Durica and Adamko created 

a bankruptcy model based on a multiple discriminant 
analysis of financial data of almost 110,000 companies. 
The authors did not set the name, we will call it the 
Model DA. The model works with five indicators, and its 
equation, according to the authors (Durica & Adamko, 
2016), has the following form:

Model DA = 0.250X1 + 0.510X2 – 0.207X3 + 
0.282X4 + 0.618X5,  (10)

where: X1 – current assets / current liabilities; X2 – EBIT / 
total assets; X3 – short-term debts / sales; X4 – working 
capital / total assets; X5 – equity / total debts.

The authors report that the model has an overall reli-
ability of 82.2%.

P’ model
Delina and Packová created the P’ model using re-

gression analysis in 2013. Data from 1,560 companies in 
the different fields of business, production and services 
were used to create this model. 1,457 enterprises were 
financially healthy, and 103 went bankrupt. The model 
contains six variables.

According to Delina and Packová (2013) the model 
is formulated in this equation:

P´ model = 2.86 – 0.0001278 1X  + 0.04851 2A  
+ 0.2136 3A  –0.000071 4A  + 0.0001068 1B  – 
0.0006116 4 , B  (11)

where: X1 – (fina000000ncial assets – short-term liabili-
ties) / (operating expenses – depreciations); A2 – retained 
earnings / total assets; A3 – EBIT / total assets; A4 – reg-
istered capital / liabilities; B1 – cash flow / total liabilities; 
B4 – EBT / operating revenues.

According to Kuběnka, et al. (2021), the model has 
an overall reliability of 76.52%.

3. Research results

The results of the tested models showed that the accuracy 
of the models is different depending on the length of the 
prediction. The accuracy of the models for estimating 
the financial situation one year before bankruptcy (t-1) 
is higher than 2 years before bankruptcy (t-2) both for 
non-bankrupt companies and for companies headed for 
bankruptcy (see Table 4). This was proven in all tested 
models. But the difference between the models was how 
accurate they are at time t-1 and how much their predic-
tive power drops at time t-2.

Table 4. Determined accuracy for the correct prediction 
of non-bankrupt and bankrupt companies (source: own 
processing)

Model

Classification of companies

non-bankrupt bankrupt

error 
II.

true 
II. SRN error 

I.
true 

I. SRB

Model Pj (t–2) 356 467 56.74% 20 118 85.51%
Model Pj (t–1) 354 469 56.99% 7 131 94.93%
Model Ycz 
(t–2) 257 566 68.77% 13 125 90.58%

Model Ycz 
(t–1) 251 572 69.50% 5 133 96.38%

V4 Model 
(t–2) 330 493 59.90% 13 125 90.58%

V4 Model 
(t–1) 326 497 60.39% 5 133 96.38%

Model 1 (t–2) 92 731 88.82% 38 100 72.46%
Model 1 (t–1) 87 736 89.43% 17 121 87.68%
Model Pav 
(t–2) 18 805 97.81% 87 51 36.96%

Model Pav 
(t–1) 13 810 98.42% 51 87 63.04%

Model DA 
(t–2) 6 817 99.27% 89 49 35.51%

Model DA 
(t–1) 3 820 99.64% 54 84 60.87%

P´ Model 
(t–2) 92 731 88.82% 70 68 49.28%

P´ Model 
(t–1) 91 732 88.94% 34 104 75.36%

Note: SRN  – success rate of non-bankruptcy prediction,  
SRB – success rate of bankruptcy prediction.

In Table 5 is stated total success rate of tested mod-
els. The confidence intervals of TSR (t-2) were also 
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calculated so that the sizes of the tested samples were 
taken into consideration in the results. No con-formity 
with the value of TSR (t-1) was found within these con-
fidence intervals either.

Table 5. Total success rate of prediction (source: own 
processing)

Models TSR TSR confidence interval

Model Pj (t–2) 71.13% (68.26%; 73.99%)
Model Pj (t–1) 75.96% x
Model Ycz (t–2) 79.68% (77.13%; 82.22%)
Model Ycz (t–1) 82.94% x
V4 Model (t–2) 75.24% (72.51%; 77.97%)
V4 Model (t–1) 78.38% x
Model 1 (t–2) 80.64% (78.14%; 83.14%)
Model 1 (t–1) 88.56% x
Model Pav (t–2) 67.38% (64.42%; 70.35%)
Model Pav (t–1) 80.73% x
Model DA (t–2) 67.39% (64.43%; 70.35%)
Model DA (t–1) 80.25% x
P´ Model (t–2) 69.05% (66.13%; 71.97%)
P´ Model (t–1) 82.15% x

Note: TSR – total success rate of prediction.

For the tested models, the greatest decrease in accu-
racy between prediction t–1 and t–2 occurred in the case 
of Model Pav (80.73% vs. 67.38%), Model DA (80.25% 
vs. 67.39%) and P’ Model (82.15% vs. 69.05 %). The 
highest prediction ability of t–1 and t–2 is achieved by 
Model Ycz (82.94% vs. 79.68%) and Model 1 (88.56% vs. 
80.64%). Model Ycz shows a lower year-on-year decrease 
in accuracy (by 3.26%) compared to the decrease in ac-
curacy in Model 1 (by 7.92%), but both TSR values at 
time t–1 and time t–2 are higher. Model 1 became the 
most suitable model for predicting financial stability and 
for predicting the bankruptcy of a company for a year 
and 2 years ahead.

4. Conclusions 

The aim of the research was to analyse a group of bank-
ruptcy models with the aim of determining their current 
ability to predict bankruptcy or financial stability 1 year 
and 2 years in advance. Their overall predictive power 
was assessed with an effort to find a model that would 
show high predictive quality in both years. It was found 
that the predictive power of some models decreased 
year-on-year by up to 13%, for example in the case of 
Model Pav, Model DA and P’ model. The V4 model (de-
crease 3.14%) and Model Ycz (decrease 3.26%) showed 
the smallest year-on-year decrease in accuracy. In all 
cases, the year-on-year decrease was confirmed with 
statistical significance using an interval of confidence 
calculation. However, more important than the value of 
year-on-year decrease in model accuracy are the absolute 
values of TSR one year in advance and, given the time 

availability of bankruptcy model predictions, especially 
the accuracy of 2 years in advance.

Model 1 (TSR 88.56%) turned out to be the most ac-
curate for predicting 1 year in advance. As the most ac-
curate for prediction 2 years in advance, it turned out to 
be the same as Model 1 with an TSR accuracy of 80.64%. 
This model can be recommended as the most suitable for 
predicting the bankruptcy of Czech companies in a time 
horizon of 1 to 2 years.
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