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Abstract 

In this financial engineering study we suggest a new realistic economic explanation of the price volatility clustering within 

worldwide financial markets. The suggested clustering mechanism is based on the cooperation of feedbacks which we 

empirically observe and which are also connected to a momentum and level trading techniques. The explanation could be 

considered as an additional one to the current volatility clustering theories and its usage is mainly for short time volatility series. 

The research is the basic one in the area of the market price development.  
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1. Introduction 

The main contribution of this financial engineering study is to suggest a new realistic economic explanation 

(termed as “spring oscillation effect”) of the price volatility clustering which we empirically observe within the 

worldwide financial markets. Using such explanation we are able to explain the volatility clusters without effects 

like economic news clustering or switching of the market between periods of high and low activity. The explanation 

is an additional one to the current theories of volatility clustering. The aim of this research is not to find particular 

parameters of the clustering mechanism but to propose functional general mechanism with the realistic financial 

interpretation and outline functional scientific framework for future studies in this area.  

The volatility clustering is commonly connected to the price volatility dependence but in this research we use 

certain directional dependence mechanisms which are able to create volatility clusters and which are 

comprehensively described in the Dynamic Financial Market Model (Stádník, 2011a; 2011b). The model puts 
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emphasis on realistic financial explanation and it is based on the direction dependence caused by feedbacks which 

are also responsible for the departures from normality in the price distributions. The idea of feedbacks is based on 

empirical observations where traders, investors and other market participants don’t only watch present or historical 

data but according to them they are also placing buy or sell orders and thus influence future development. Feedback 

is triggered or cancelled according to the past or current circumstances. Feedback can work together or against 

another feedback. According to the Dynamic Financial Market Model presumptions we expect more financial 

mechanisms which use feedbacks and which are involved in the following groups: price development limits, 

technical analysis, trend stabilizer, price inertia, trading techniques, different up/down movements, market price 

manipulations, market regulations, round numbers, logarithmic correction of a price, etc. However complex 

modelling of financial markets in this way is not so frequent. Some studies of directional dependence are based on 

the presumption that economic patterns may recur in the future. Also commonly used technical trading rules are 

based on the market price directional forecasting according to the past. We meet many other interesting detailed 

works or case studies in the area of the development direction dependence (Henriksson & Merton, 1981; Anatolyev 

& Gerko, 2005, study about the connection of liquidity and market crashes done by Huang & Wang, 2010; other 

works like Vacha, Barunik, & Vosvrda, 2009; Primbs & Rathinam, 2009; Lux, 2011). Price direction development 

dependence also takes place in the basic feedback process according to the behavioral finance concept where 

upward trend is more likely to be followed by another upward movement (Schiller, “From Efficient Markets Theory 

to Behavioral Finance”, 2003) or in other works like short term trend trading strategy in futures market based on 

chart pattern recognition (Masteika & Rutkauskas, 2012) or development of the conception of sustainable return 

investment decision strategy in capital and money markets (Rutkauskas, Miečinskiene, & Stasytyte, 2008). We also 

have to mention work of Larrain, 1991, which state that long term memory exists inside the financial market and 

other similar work of Hsieh, 1991; Peters, 1989 and 1991 which focus mainly on measurement of probability 

diversions from normality. All the mentioned studies supporting a suspicion that a certain form of the directional 

dependence may cause also effects like sequence of damped oscillations which has a similar form to the observed 

volatility clustering.  

On the other hand a wide range of models currently uses the volatility dependency. For example Buckley, 2008 

has used in his work the Gaussian mixture distribution. Gaussian mixture has an acceptable interpretation: financial 

market performs in two regimes with high and low volatility. Gaussian mixture is able to model departures in the 

distribution and also volatility clusters which depend on the probability of both regimes and their parameters. If the 

latent regimes have a Markov law of motion, the mixture is then a hidden Markov model (Baum & Petrie, 1966), 

which is also known as the Markov regime switching model. There are many extensions of the Markov switching 

model (Krolzig, 1997; etc.) Other famous works in this area were done by Bollerslev, 1986, GARCH process; 

Engle, 1995, ARCH process. Some new research in the area of volatility dependence was done by Witzany, 2013 

(“Estimating Correlated Jumps and Stochastic Volatilities”) or Roch, 2011. While GARCH, ARCH and other 

stochastic volatility models propose statistical constructions based on volatility clustering in financial time series, 

they do not provide any economic explanation.  

The realistic economic explanation of volatility clustering using standard theories is difficult. The simplest idea is 

that volatility clustering is caused by switching of the market between periods of high and low activity or clustering 

of economic news. These effects are typical volatility dependency cases but they are not able to explain volatility 

clustering inside the time periods without economic news arrival or in very short periods. We also have other 

explanations like the competition between more trading strategies but the simulation does not allow confirming 
mechanism being responsible for volatility clustering (Cont, 2005). Volatility clustering could also arise from 

switching of market participants between fundamentalist and chartist behavior (Lux & Marchesi, 2000). According 

to Cont, 2005, the origin of volatility clustering can be also caused by threshold response of investors to news 

arrivals. Volatility clustering also could be connected to a clustering of trading activity (Chordia, Roll, & 

Subrahmanyam, 2001) due to switching between two periods of higher and lower economic uncertainty. 

2. Spring oscillation effect description and simulation 

Volatility clustering within financial markets can be, according to the first point of view, visually compared to the 

sequence of repeated damped oscillations of a mechanical spring (Figs 6, 7, 8) which are randomly hit by external 
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disturbances. If we find really existing “forces” within the financial market which are analogical to the forces which 

are responsible for the mechanical oscillations we can apply appropriate description from physics to finance. To 

make such identification is the core of this research. In the case of damped mechanical oscillations we work with the 

mass inertia, we work with the force, which acts against the movement, and its value is perpendicular to the 

deviation from the equilibrium position and finally with the damping caused by a mechanical friction. The 

oscillation is triggered by an external impulse.  

General mechanical force can be in finance represented by mentioned feedbacks increasing the value of 

probability of next price step up or down direction (from 50/50% for the pure random walk to for example 51/49) 

thus causing certain movement dynamics with acceleration and consequently a certain speed of the price change.  

Mass inertia can be in finance represented by a momentum of a price movement, which keeps the movement in a 

certain direction and which is also described in the Dynamic Financial Model as the trend stabilizer feedback. For 

example momentum trading when traders try to find instruments that are moving significantly in one direction on 

high volume and try to participate in the profit from this movement is based on this mechanism. Momentum traders 

may hold their positions for a few minutes, hours or even the entire length of the trading day. Traders are supporting 

the trend by their own orders and therefore we speak about the feedback to the past influencing the future 

development direction. The research in the area of momentum trading has been done by Pesaran & Timmermann, 

1995; Chan, Jegadeesh, & Lakonishok, 1996; Stankevičienė & Gembickaja, 2012; Donefer, 2010; Easley, Prado, & 

O'Hara, 2011, 2012; Fabozzi, Focardi, & Jonas, 2011; Franck, Walter, & Witt, 2013; Rey & Schmid, 2007.   

Mechanical force which is pushing the mass against the movement and which is proportional to the distance from 

the equilibrium can be financially interpreted as the price inertia feedback which is pushing the market price back to 

a certain level and which is also described in the model. The certain level can be for example the price level which 

was set after the last economic news of high importance. The value of the force is increasing with the market price 

deviation from the level as the activity of traders attempting to participate on the price turnover (level trading) is 

also increasing in this case. 

Mechanical damping in finance can be represented by gradual satisfying of orders which have triggered the 

oscillation; thus we expect the damping to be proportional to the change of price per a time unit; or by the 

decreasing of market activity or by changing of the market situation due to other market circumstances.  

The price oscillations are usually triggered by buy or sell order or by economic news. 

The equation 1 is the general equation describing damped oscillation movements. It is the second-order 

homogeneous differential linear equation. If we apply the equation on the price movements then the left side of the 

equation represents the acceleration of the price change where y is the deflection from the initial value (the value 

before the oscillations triggering) at time t and constant c1 is connected to the trend stabilizer; constant c2 is 

connected to the damping and c3 belongs the price inertia feedback. In this case we expect the pure cooperation of 

momentum and price inertia feedbacks without any random component.  

2

1 3 22

d y dy
c c y c

dtdt
= − −  (1) 

The particular solution has a specific form: 

t
y Ce

α
=   (2) 

and α1, α2 can be expressed from the characteristic equation: 

2

1 2 3 0c c cα + α+ =   (3) 

α1, α2 equals: 
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Under the condition: 

2

1 3 24c c c<   (5) 

we consider over-damping without oscillation (Fig. 1a). The dominant force is the price inertia feedback and the 

price returns to the initial value in the fastest way. The result is a linear combination of two particular solutions:  

( ) 1 2
1 2

t t
y t C e C e

α α
= +   (6) 

Under the condition:  

2

1 3 24c c c=  (7) 

we observe critical damping (Fig. 1b) when the price returns to the initial value also without oscillation. The 

dominant force is the price inertia feedback. The solution has form:  
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In these both cases we do not observe typical oscillations. 

Under the condition: 

2
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α1, α2 are complex conjugates: 
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The cooperation of the price inertia feedback and the trend stabilizer causes typical damped oscillation. A 

possible forms of the oscillations depends on the constants c1, c2, c3 (Fig. d in 1c, d, e, and f). The solution has form 

(equation 11): 
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Fig. 1. Examples of under-damped oscillations (c, d, e, f), over-damping (a) and critical damping (b) 

Denotations b and ω are taken from a common technical formalism, where b is the constant of damping and ω is 

an angular velocity of an oscillation motion. 

Depending on the parameters b and ω we can model different style of the oscillations which are based on real 

market observed price fluctuations.  

There are unrealistic situations in the Fig. 1 and to be more in accordance with reality we have to consider also 

some random component R (t,y) inside the oscillation process (equation 12) which cause observed disturbances. 

Such a random component is basically random additional acceleration of a price change and for our simulations we 

expect its uniform distribution around the equilibrium position. The uniform distribution is economically supported 

by, for example, the external factors (incoming economic news) or internal factors (traders who use different 

techniques than momentum or price inertia trading) and these factors do not depend on the state of an oscillation. 

The simulation of the random component in the oscillations in the Fig. 2a is in the Fig. 2b which is then more in 

accordance with a realistic development. 
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Fig. 2. Simulation of damped oscillations (a) with the random process (b) 

The results of complex simulation at time of a market volatility development based on the spring effect with the 

random disturbances are in the Fig. 3a, b. The initial impulse which triggers the spring effect also occurs at random 

time (uniform distribution) in the simulation. Autocorrelation of volatility data series in the simulation according to 

Fig. 3a is 0.211. Similar simulation in the Fig. 3b (autocorrelation of volatility data series: 0.124) uses two regimes 

of a trend stabilizer and price inertia forces (higher and lower) and also triggering of the oscillation at random time. 

The value of autocorrelation is in good accordance with the realistic volatility series in the Figs 4, 5, 6. 

 

Fig. 3. Simulation of clustering based on damped oscillations (a), (b) 

The spring effect which is based on the directional dependence provokes the question of possible price 

directional forecasting. We expect nowadays this rule is partly hidden but even in the case of its usage the 

predictability advantage is probably not to much higher than 1% which does not cover the transaction costs (Stádník, 

2012, 2013a). 



1182   Bohumil Stádník  /  Procedia - Social and Behavioral Sciences   110  ( 2014 )  1176 – 1184 

3. Spring effect empirical observations  

In the 1 min. volatility data series (Fig. 4a, b) we observe volatility clusters on Euro-Bund contract. These 

volatility clusters can be very well explained by the price inertia and the trend stabilizer spring effect. The existence 

of these effects is economically supported by the coexistence of high frequency momentum trading and also by the 

high frequency price inertia (level) trading.  

a b

Fig. 4. Example of damped oscillations sequence in 1 minute volatility series with damped oscillations  

of Euro-Bund Futures (FGBL, EUREX) (a), detailed (b) 

In 10 minutes volatility data series (Figs 5a, b) we also observe volatility clusters but with a slightly different 

shape that in 1 minute time period (Fig. 5a, b). 

a b

    

Fig. 5.  Example of damped oscillations sequence in 10 minutes volatility series of Euro-Bund Futures (FGBL, EUREX) (a), detailed (b) 

In the Figs 6a, b there are volatility clusters in EUR/USD 5 minutes which can also be very well explained using 

the spring oscillation effect.  

a b

    

Fig. 6.  Example of damped oscillations sequence in 5 minutes volatility series of EUR/USD (a), detailed (b) 
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4. Conclusions 

The main contribution of this financial engineering research is the suggestion of a realistic economic explanation 

of the price volatility clustering which we empirically observe within the worldwide financial markets. The 

explanation is an additional one to the current theories of volatility clustering and it is useful especially in short time 

periods. We propose clustering mechanism – spring oscillations effect which is based on the cooperation of price 

inertia and trend stabilizer feedbacks. The mechanism is connected to a momentum trading which we have identified 

within the financial market. The effect works in the similar way as a mechanical oscillations depending on the 

parameters of the particular processes. Using such explanation we are able to explain the volatility clusters in the 

time periods where we don´t observe effects like economic news clustering or switching of the market between 

periods of high and low activity. In the research we outline the appropriate mathematical description and we also do 

provide simulations of the real financial market situations. The spring effect which is based on the directional 

dependence provokes the question of possible price directional forecasting.  

The aim of this research is not to find all the particular parameters of the clustering mechanism but to propose a 

functional scientific framework with the realistic financial interpretation. 
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