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Abstract. Securities portfolio optimization has been analysed so far on the assumption that the estimation of the prob-

ability distribution concerning future rates of return is possible thanks to historical data. However, sometimes it is de-

sirable to forecast profits by considering factors which are not included in past and present results. The purpose of the 

paper is to investigate the stocks portfolio optimization in the context of decision making under complete uncertainty, 

i.e. uncertainty with unknown probabilities, which allows the investor to refer to scenario planning. In the contribution, 

we propose the use of a decision rule for portfolio optimization under complete uncertainty. The procedure takes into 

account the decision maker’s nature and enables one to select the optimal mixed strategy, which is characteristic of 

portfolio optimization where variables denoting the share of particular securities are continuous (not binary). The deci-

sion process is discussed for two types of decision makers: an active one (who estimates the profit matrix on his own) 

and a passive one (who uses a profit matrix generated by experts). Additionally, we analyse the impact of the profit 

matrix estimation (subjectively or objectively) on the decision making process.  

Keywords: portfolio optimization, stocks, payoff matrix, optimal mixed solution, uncertainty, decision maker’s prefer-

ences.  
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Introduction  

Securities portfolio optimization is the process of choosing the proportions of various securities to be held in a portfolio, 

in such a way as to make the portfolio better than any other according to some criterion. The criterion combines con-

siderations of the expected values of the portfolio’s rate of return as well as of the return dispersion and possibly other 

measures of financial risk. In this contribution we limit the research to stocks (shares). The stock portfolio optimization 

is usually led in the framework of decision making under stochastic uncertainty which concerns decision problems 

with at least one parameter being a random variable with a known probability distribution (i.e. the rate of return). When 

making decision under stochastic uncertainty, the decision maker is able to define possible states of nature (scenarios, 

events) and the probability that a particular scenario will occur.   

Nevertheless, the use of historical data in order to estimate the probability distribution may sometimes prove 

inadequate for stock portfolio optimization when exchange rates times series are not long enough or when the investor 

(stockbroker, financial expert) is able to predict totally new future events that are not included in historical rates of 

return. The technical analysis (a security analysis methodology for forecasting the direction of prices on the basis of 

charts and statistics generated by market activity) and fundamental analysis (analysis attempting to measure the intrin-

sic value of the security by examining related economic, financial and other qualitative and quantitative company-

specific factors) constitute a very helpful tool in forecasting future rates of return, but they also might turn out to be 

insufficient because they are both carried out on past and present data. In such circumstances the calculation of the 

likelihood of the occurrence of future possible scenarios may be unenforceable.  

Therefore, we would like to investigate the stock portfolio optimization in the context of decision making under 

complete uncertainty, i.e. uncertainty with unknown probabilities, which allows the investor to refer to scenario plan-

ning and to take into consideration his or her nature (preferences) instead of probabilities defined objectively. In the 

paper, we propose a decision rule for stock portfolio optimization under complete uncertainty. The decision process is 

discussed for two types of decision makers: an active one and a passive one. The first one estimates the profit matrix 

(rate of return matrix) on his own. The second one makes the decision on the basis of a profit matrix defined by experts. 

We are also going to analyse the impact of the profit matrix estimation on the decision making process.  
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The paper is organized as follows. The first part deals with previous research concerning stock portfolio optimi-

zation. Then scenario-based decision making under complete uncertainty is briefly described. In the main part of the 

contribution, we present two decision rules supporting stock portfolio optimization for passive and active investors, 

respectively. We also provide a case study. Conclusions are gathered in the last part.    

Previous research 

As it was mentioned in the introduction, the stock portfolio optimization serves to determine the percentage structure 

of the portfolio consisting of diverse shares. Modern portfolio theory, fathered by (Markowitz 1952, 1959), assumes 

that an investor wants to maximize a portfolio’s expected return contingent on any given amount of risk, with risk 

measured by the standard deviation of the portfolio’s rate of return. For portfolios that meet this criterion, known as 

efficient portfolios, achieving a higher expected return requires taking on more risk, so investors are faced with a trade-

off between risk and expected return (Andriotto, Teti 2014). This risk-expected return relationship of efficient portfo-

lios is graphically represented by a curve known as the efficient frontier. All efficient portfolios are represented by a 

point on the efficient frontier. Papers devoted to portfolio optimization, based on the assumption that the expected rates 

of return related to particular securities are computed by means of historical data, are numerous (Anholcer et al. 2004; 

Gaspars, Sikora 2004; Gaspars 2004, 2005; Gaspars-Wieloch 2008; Haugen 2001; He, Zhou 2011; Jurek 2001; 

Kitowicz, Sikora 2004; Kolm et al. 2014; Konno, Yamazaki 1991; Pirvu, Schulze 2012; Weber et al. 2015). 

However, the use of past data to estimate the probability distribution of rates of return may be inadequate for 

stock portfolio optimization if the investor intends to take into account new factors which can influence future results. 

Some of those factors can be detected thanks to the technical analysis (which attempts to identify patterns that can 

suggest future activity) and fundamental analysis (which attempts to study everything that can affect the security’s 

value), but the decision maker (or experts) may even predict events which are not included in studies aforementioned 

(Castellano, Scaccia 2014; Graf, Six 2014; Gurgul, Wójtowicz 2014). That is why, from the author’s point of view, it 

is desirable to examine the problem of stock portfolio optimization for the situation where the expected rates of return 

(calculated by means of the likelihood resulting from historical prices) is replaced by predicted rates of return (which, 

apart from considering past and present events, include information concerning the future). The novel approach refers 

to scenario planning and decision making with unknown probabilities. Additionally, it allows investors to choose a 

strategy which reflects their preferences and nature. 

Scenario-based decision making under complete uncertainty 

According to the Knightian definition (Knight 1921), we will assume that decision making under complete uncertainty 

(DMCU) is characterized by a situation where the decision maker (DM) has to choose the appropriate alternative 

(decision, strategy) on the basis of some scenarios which probabilities are not known – uncertainty with unknown 

probabilities (Courtney et al. 1997; Dominiak 2006; Groenewald, Pretorius 2011; Render et al. 2006; Sikora 2008; 

Trzaskalik 2008; von Neumann, Morgenstern 1944; Walliser 2008; Williams et al. 1997). DMCU is also related to 

cases where probabilities are known but the DM does not want to make use of that data (Trzaskalik 2008). Note that 

if the DM does not know the list of possible scenarios, we deal with DMTI (decision making under total ignorance). 

On the other hand, if the DM knows the set of events and their probabilities of occurrence, then the problem is related 

to DMSU (decision making under stochastic uncertainty).   

Scenario planning, used within the framework of DMU (Pomerol 2001), is a technique for facilitating the process 

of identifying uncertain and uncontrollable factors which may influence the effects of decisions in the strategic man-

agement context. The way how scenarios should be constructed is described e.g. in (Dominiak 2006; Van der Heijden 

1996). The result of the choice made under uncertainty with scenario planning depends on two factors: which decision 

will be selected and which scenario will occur.  

DMCU+SP (decision making under complete uncertainty with scenario planning) may be presented by means of 

a profit matrix (see Table 1) where n denotes the number of decisions (A1, …, Aj, …, An), m signifies the number of 

mutually exclusive scenarios (S1, …, Si, …, Sm) and aij is the profit resulting from the choice of decision Aj and the 

occurrence of scenario Si . We assume that the distribution of payoffs related to a given decision is discrete.  

Table 1. Payoff matrix (general case) (Source: prepared by the author) 

Scenarios\alternatives A1 Aj An 

S1 a1,1 a1,j a1,n 

Si ai,1 ai,j ai, n 

Sm am,1 am,j am, n 
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There are many classical and extended decision rules designed for one-criterion DMU (Basili et al. 2005, 2008; 

Basili 2006; Basili, Chateauneuf 2011; Ellsberg 2001; Etner et al. 2012; Gaspars 2007; Gaspars-Wieloch 2012, 2013, 

2014a, 2014b, 2014c, 2014d, 2015a, 2015b, 2015c; Ghirardato et al. 2004; Gilboa 2009; Gilboa, Schmeidler 1989; 

Hayashi 2008; Hurwicz 1952; Ioan, C., Ioan, G. 2011; Marinacci 2002; Piasecki 1990; Savage 1961; Schmeidler 1986; 

Tversky, Kahneman 1992; Wald 1950) and multicriteria DMU (Aghdaie et al. 2013; Ben Amor et al. 2007; Dominiak 

2006, 2009; Durbach 2014; Eiselt, Marianov 2014; Gaspars-Wieloch 2014e, 2015d, 2015e; Ginevičius, Zubrecovas 

2009; Goodwin, Wright 2001; Hopfe et al. 2013; Janjic et al. 2013; Korhonen 2001; Lee 2012; Liu et al. 2011;  

Mikhaidov, Tsvetinov 2004; Montibeller et al. 2006; Ram et al. 2010; Ramik et al. 2008; Ravindran 2008; Stewart 

2005; Suo et al. 2012; Triantaphyllou, Lin 1996; Tsaur et al. 2002; Urli, Nadeau 2004; Wang, Elhag 2006; Wojewnik, 

Szapiro 2010; Xu 2000; Yu 2002). However, the majority of the extended rules refer to the probability calculus, which 

is rather characteristic of DMSU. Existing decision rules differ one from another with respect to the DM’s preferences 

measured, for instance, by the coefficient of pessimism (α) or optimism (β).  

DMU procedures are dedicated to searching an optimal pure (the DM chooses and executes only one alternative) 

or mixed strategy (the DM selects and performs a weighted combination of several accessible alternatives), see e.g. 

bonds portfolio construction, cultivation of different plants (Officer, Anderson 1968; Puppe, Schlag 2009; Sikora 

2008). This paper concern the second case since the stock portfolio optimization consists in defining optimal shares of 

particular stocks in the portfolio. The sum of those shares is equal to 1 and variables are continuous. 

It is worth emphasizing that some rules find application when the DM intends to perform the selected strategy 

only once (one-shot decisions). Others are recommended for people contemplating realization of the chosen variant 

many times (multi-shots decisions). This contribution focuses on one-shot decision problems because in the case of 

stock portfolio optimization the investor usually defines the optimal portfolio structure for a single period and then, 

after comparing theoretical rates of return to real rates of return, he or she may take into consideration new information 

and new possible future events. 

The decision rules presented in this paper allow the DM to find an optimal mixed strategy. Note that existing one-

criterion and multicriteria procedures for mixed strategies rather relate to game theory, i.e. game between players 

(Czerwiński 1969; Gilboa 2009; Grigorieva 2014; Lozan, Ungureanu 2013; Luce, Raiffa 1957; Voorneveld et al. 1999, 

2000), than game against nature (which constitutes a neutral opponent). Therefore, the creation of an approach for 

uncertain mixed decision making with scenario planning (or scenario-based mixed DMCU) seems to be vital and de-

sirable. The method described in this contribution has the following features: 

1) It enables the DM to reduce the set of potential scenarios to the set of the most subjectively probable scenarios 

and to make the final decision on the basis of the selected events (idea presented in (Gaspars-Wieloch 2013, 

2014b, 2015b)). 

2) It allows the DM to take into consideration his or her preferences, nature and predictions (the rate of return matrix 

may be estimated intuitively by the investor – case of the active investor, the decision is determined by the level 

of optimism measured by β – case of the passive investor), see e.g. (Gaspars-Wieloch 2014c; Hurwicz 1952). 

3) It takes into account all rates of return connected with potential shares, which is especially important in the case 

of significant differences between the dispersions of particular predicted incomes (Gaspars-Wieloch 2015c; 

Ioan, C., Ioan, G. 2011). 

Hence, the approach proposed in this article has some similarities with previous decision rules worked out by the 

author and concerning DMCU, but this one is adapted to portfolio analysis by taking into account the width of particular 

intervals of rates of return and by formulating an optimization model for searching mixed strategies, i.e. portfolio 

structures. 

Uncertain stock portfolio optimization for passive investors 

Passive investors are defined in this paper as decision makers who do not intend to forecast future scenarios concerning 

particular stocks and to determine the most probable states, but they are interested in receiving final recommendations 

from experts and analysts. In such circumstances the rate of return matrix (RR matrix) is not supposed to be estimated 

by investors. They are only asked to: 

− define the set of stocks (A1, …, Aj, …, An) that they are willing to include in their portfolio and 

− declare their preferences measured by the coefficient of optimism ]1,0[∈β (β tends to 1 for extreme opti-

mists). That parameter may be calculated on the basis of psychological tests (see e.g. Sawicki, Tyszko 2011) 

or subjectively estimated by the decision makers themselves.  

A possible decision rule for stock portfolio optimization in the case of passive investors (SPO-PI) may contain 

the steps presented below:    
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− Step 1: Given P – a set of potential stocks (suggested by the investor), and a rate of return matrix (generated 

by experts) for the considered portfolio optimization problem, choose an appropriate value of parameter β 

according to the DM’s level of optimism (psychological tests or subjective estimation). 

− Step 2: Solve the max-min problem in order to calculate the maximized minimum guaranteed income (y*), 

Eqs (1)–(4). 

 maxy → ;  (1) 

 yxa

n

j

jij ≥∑ ,      mi ,...,1= ; (2) 

 

1=∑
n

j

j
x ; (3) 

 
0≥jx ,       nj ,...,1= , (4) 

where: aij stands for the rate of return connected with stock Aj and scenario Si, xj denotes the share of stock Aj in the 

portfolio, n is the number of potential securities, m signifies the number of considered states. 

Note that model (1)–(4) represents the Wald’s decision rule for mixed strategies and it is designed for extreme 

pessimists (Wald 1950). The solution of that problem does not constitute the final structure of the portfolio in the case 

of SPO-PI, but it is just used to compute the rate of return that can be gained even if the worst scenario occurs, i.e. y*. 

− Step 3: Find the maximum revenue (M*), Eq. (5). 
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− Step 4: Find the set of the most probable scenarios (K) with the aid of s (6)–(10). 
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where: rβ belongs to [y*, M*] and denotes the expected level of revenue dependent on β, dij denotes the number of rates 

of return related to stock Aj which are worse than aij, di is the total number of “dominance cases” related to state Si, dmax 
and dmin are the highest and the lowest number of “dominance cases” respectively and pj(aij) is the position of rate of 

return aij in the non-increasing sequence of all rates connected with stock Aj (when aij has the same value than other 

rates of return concerning a given security, then it is recommended to choose the farthest position of this rate of return 

in the sequence – see Eq. (10)). Constraint (7) shows the relationship between the coefficient of optimism and the 

expected (desired) revenue. Scenario Si may belong to K if and only if it contains at least one rate of return not lower 

than rβ or its number of “dominance cases” is sufficiently close to dmax  (Eq. (6)). Scenario with dmax and with at least 

one payoff equal to M* might be treated as the best state of nature, but in many decision problems such an event does 

not exist.  

As we can see, the goal of step 4 is to reduce the original set of scenarios to a smaller set containing the states of 

nature which reflect the DM’s nature and predictions.  

− Step 5: Solve the mixed portfolio optimization problem using Eqs (11)–(16). The optimal solution represents 

the mixed strategy reflecting the declared DM’s nature.  

 min}0,max{ →∑
∈Ki

i
g ;  (11) 
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where: K denotes the set of the most probable events, gi is the deviation from rβ of the rate of return achieved by the 

DM if scenario Si occurs. Symbol σj  signifies the standard deviation of all estimated rates of return connected with 

stock Aj, σmin and σmax are the standard deviation of the stocks with the smallest and the highest dispersion of rates of 

return, respectively. Note that when calculating the standard deviation, all rates of return are taken into consideration 

(not only those related to set K) and all of them have the same probability since the goal of this measure is to compare 

the dispersion of rates of return of particular securities (Eq. (16)). 

When β tends to 1, then the DM is an optimist and expects a very high income, close to the rate of return charac-

terized by formula (5), i.e. M*. On the other hand, when β tends to 0, the decision maker is less demanding and wants 

to gain at least y*.  Parameter β has an impact on the set of the most likely scenarios. One may make the following 

assumption – higher the value of this parameter is, less probable, in the DM’s opinion, states of nature offering low 

rates of return are. Therefore, such scenarios are not considered in the optimization model.  

Additionally, parameter β may be used in order to determine a linear combination of stocks with a suitable dis-

persion of rates of return (Eq. (15)). The model recommends stocks with a small dispersion for pessimists. However 

condition (15) is optional and can be formulated in a different way. Here we suggest using value 1.5σmin  as the upper 

bound for radical pessimist (0(σmax–1.5 σmin)+1.5σmin = 1.5σmin) since with such a constraint the extreme pessimist has 

the possibility to generate a portfolio containing more than one stock, which would not be the case if value 1.0σmin was 

used. Of course value 1.5σmin may be replaced by another value belonging to [σmin, σmax), depending on the rate of return 

dispersions of a given problem.  

Both sides of condition (12) represent the true rate of return obtained if the shares of a particular portfolio equal 

x1, x2, …, xn and scenario Si takes place. The aim of the optimization model (Eq. (11)) is to minimize, within set K, the 

sum of all deviations between the true rates of return and the expected (desired) ones. Note that only positive deviations 

are treated as unwanted since then the expected revenue exceeds the true income, i.e. the true rate of return is lower 

than the desired one. Negative deviations do not need to be minimized because they occur when the investor gains 

more than he wishes (it is a desirable situation). 

One of the main questions is how to select the most probable scenarios on the basis of the coefficient of optimism 

declared by the decision maker. In this paper we assume that set K should contain all scenarios that satisfy conditions 

(6)–(10), but it is only a suggestion. Similar assumptions have been made in (Gaspars-Wieloch 2013, 2015b, 2015d, 

2015e). 

It is worth underlining that in the case of SPO-PI, optimal strategies suggested for radical pessimists (β = 0) are 

totally the same as strategies recommended by Wald (see model (1)–(4)) since then the DM prefers analyzing all 

possible scenarios to taking into consideration only the most probable ones.  

Uncertain stock portfolio optimization for active investors 

In the case of an active investor the procedure has, partially, totally different steps since he (or she) controls each stage 

of the decision making process. This time, the RR-matrix is estimated by the decision maker, which means that it is 

not forecasted in an objective way. Furthermore, the predicted rates of return contain some information about the DM’s 

nature. This time, investors (even if they consider the same set of potential stocks) make the decision on the basis of 

different matrices. Therefore, the choice of the most probable scenarios should not be made by means of the coefficient 

of optimism because the level of optimism is already included in the matrix. Thus, the set of the most probable states 

may be defined by the decision maker without any additional computations. The investor knows very well the RR-

matrix because it was generated by the DM and he is able to select, subjectively, events which are, in his opinion, the 

most feasible. The estimation of parameter r* (desired level of revenue) should be also performed subjectively by the 

investor.   
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A possible procedure for stock portfolio optimization in the case of active investors (SPO-AI) may contain the 

following steps:   

− Step 1: Suggest P – a set of potential stocks and generate the RR-matrix (performed intuitively by the in-

vestor). 

− Step 2: Solve the max-min problem in order to calculate the maximized minimum guaranteed income (y*), 

Eqs (1)–(4). 

− Step 3: Find the maximum revenue (M*), Eq. (5). 

− Step 4: Find K – the set of the most probable scenarios (performed intuitively by the investor). 

− Step 5: Solve the mixed portfolio optimization problem using Eqs (17)–(21). The optimal solution represents 

the mixed strategy reflecting the DM’s nature.  

 min}0,max{ →∑
∈Ki

i
g ;  (17) 
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where: r* belongs to [y*, M*] and signifies the desired level of revenue. Symbol s denotes the accepted level of disper-

sion of rates of return, s belongs to [σmin, σmax].   

As it can be observed, the active investor does not need to declare his or her coefficient of optimism (pessimism) 

since the information concerning the DM’s nature is included in estimated rates of return. 

Case study 

Let us illustrate both procedures. We assume that D1 is a passive investor and D2 – an active one. D1 and D2 are both 

optimists. However they will declare their preferences in a different way. The analysis is going to be made on the 

assumption that both decision makers have pointed the same set of potential stocks: P = {A1, A2, A3, A4, A5, A6}, 

e.g. Hilton Food (HFG), Vectura (VEC), TalkTalk (TALK), CineWorld (CINE), Game Digital (GMD), Lonmin (LMI) 

from LSE (London Stock Exchange.   

SPO-PI (D1): 

−  Step 1: Experts generate a RR-matrix (Table 2), D1 declares his level of optimism: β = 0.8. The way the 

matrix is estimated is beyond the scope of this article. Here we just show how objectively estimated rates of 

return can be used for particular investors. 

− Step 2: The maximized minimum guaranteed income is calculated (Eqs (1)–(4)): y* = 1.4453% (x1 = 0.0876, 

x2 = 0.3066, x3 = 0.6058, x4 =  x5 = x6 = 0), which means that even if the worst scenario occurs, the generated 

portfolio guarantees at least 1.44% per quarter (y* is treated as the revenue for an radical pessimist).   

− Step 3: The maximum revenue is found: M*= 8% (Eq. (5)). That rate of return is assigned to an extreme 

optimist. 

Table 2. Quarterly rate of return matrix (generated by experts for investor D1) – in percentage (Source: prepared by the author) 

Scenarios\stocks A1 A2 A3 A4 A5 A6 

S1 2 7 –1 0 5 3 

S2 –1 5 0 3 8 1 

S3 4 0 3 5 2 7 

S4 –4 –6 6 6 –5 –6 

S5 6 3 0 –5 –1 4 
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− Step 4: The set of the most probable scenarios is determined (Eqs (6)–(10) and Table 3): rβ = 0.8(8 –

1.4453) + 1.4453 = 6.689%, dmin = 8, dmax = 16, dβ = 0.8(16 – 8) + 8 = 14.4. Hence, K = {S1, S2, S3} since 

S1, S2 and S3 has at least one rate of return not lower than rβ and for S3 index di is not lower than dβ.  

Table 3. “Dominance cases” (Source: prepared by the author) 

Scenarios\stocks A1 A2 A3 A4 A5 A6 di 

S1 2 4 0 1 3 2 12 

S2 1 3 1 2 4 1 12 

S3 3 1 3 3 2 4 16 

S4 0 0 4 4 0 0 8 

S5 4 2 1 0 1 3 11 

 

− Step 5: The standard deviation for each stock is computed: σ1 = 3.975 pp, σ2 = 5.070 pp, σ3 = 2.881 pp, 

σ4 = 4.438 pp, σ5 = 5.070 pp, σ6 = 4.868 pp. The mixed portfolio optimization problem is solved (Eqs (11)–

(16)). The optimal solution is: g1 = 2.28 pp, g2 = 0.00 pp, g3 = 4.02 pp, x1 = 0, x2 = 0, x3 = 0.057, x4 = 0, 

x5 = 0.82, x6 = 0.122) and it guarantees a true rate of return belonging to [2.667%, 6.689%] on condition that 

one of the scenarios from set K occurs (S1, S2 or S3). Note that this interval contains values much higher 

than y*. 

SPO-AI (D2): 

− Step 1: Investor D2 generates the RR-matrix (Table 4). In his opinion only 4 scenarios are possible. Note 

that rates of return estimated by D2 are significantly higher than rates of return estimated by experts for the 

portfolio optimization problem solved by D1 since the first ones (D2) are defined in a subjective way and 

the second ones (D1) were set objectively. Thus, we are not allowed to apply the same procedure for D2 

because if we use SPO-PI for D2 the DM’s optimistic nature will be doubly taken into consideration (in the 

subjective matrix and by applying parameter β to select K, rβ  and a suitable level of rate of return dispersion), 

which will lead to overestimated values.   

Table 4. Quarterly rate of return matrix (generated by investor D2) – in percentage (Source: prepared by the author)  

Scenarios\stocks A1 A2 A3 A4 A5 A6 

S1 4 9 2 2 6 4 

S2 2 6 2 1 7 2 

S3 6 2 5 5 2 8 

S4 –1 –5 7 8 –1 –2 

 

− Step 2: y* = 3.77%. 

− Step 3: M* = 9%. 

− Step 4: Investor D2 states that K = {S1, S3}. 

− Step 5: Investor D2 defines r* = 7.2% (note that 7.2% belongs to [3.77%, 9%]) and s = 4.5 pp (4.5 pp belongs 

to [σmin, σmax] = [2.45 pp, 6.06 pp]). The mixed portfolio optimization problem is solved. The optimal port-

folio structure is: x1 = 0, x2 = 0.133, x3 = 0, x4 = 0, x5 = 0, x6 = 0.867 and g1 = 2.53 pp, g3 = 0.00 pp, which 

signifies that the true rate of return belongs to [4.66%, 7.2%] on condition that one of the scenarios from set 

K occurs (S1 or S3). 

As we can observe, final portfolios are different for particular decision makers. Intervals of true rates of return may 

also differ significantly even if both investors are optimists. It is normal and justifiable since D1 and D2 are character-

ized by different preferences, commitment and predictions.  

Conclusions  

In the paper we propose a procedure supporting stock portfolio optimization when the probability distribution concern-

ing future rates of return is not known (complete uncertainty). The decision rule takes into consideration the decision 

maker’s nature (pessimists, optimists, moderate decision makers) and commitment (passive and active decision mak-

ers). It is worth emphasizing that the research does not focus on how rates of return should be estimated (it is assumed 
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that this step is performed by experts or individual investors), but it concentrates on decision making on the basis of a 

given rate of return matrix (estimated objectively or subjectively).  

We conclude that even if two investors intend to construct a portfolio based on the same set of potential stocks 

and even if they have a similar nature, the final structure of their portfolios may be significantly different, depending 

on the degree of their commitment and knowledge about the future (Graf, Six 2014). We also demonstrate that: 

a) when the RR (rate of return) matrix is estimated objectively (by experts), parameter β may be used to select 

the most probable scenarios, determine the desired level of revenue and calculate the upper bound of dis-

persion; 

b) when the RR matrix is estimated subjectively (by the investor), parameter β cannot be used for the above 

purposes since the information about the DM’s nature has been already included in the subjective matrix. 

The new decision rule has at least four advantages. Firstly, it recommends different portfolios depending on the 

DM’s level of optimism, commitment and predictions. Secondly, it takes into account the dispersion of all estimated 

rates of return (not only those related to scenarios belonging to K) connected with particular stocks. Thirdly, it does 

not treat nature as a conscious opponent who is altering strategies depending on the outcomes (the set of the most 

probable scenarios is selected before solving the optimization problem). The status of a given state of nature does not 

vary depending on the stock, but is fixed for all securities. Such a way of reasoning may be a good answer to the critical 

analysis of classical decision rules carried out by (Officer, Anderson 1968) who claim that the nature is not a conscious 

opponent and it cannot change the “strategy” (i.e. the scenario) to minimize or maximize, for each choice of the deci-

sion maker, his or her outcome. Fourthly, the reduction of the original set of potential scenarios to K (the set of the 

most probable states) allows the DM to obtain a higher minimal guaranteed income than y* (the minimal guaranteed 

income according to the Wald’s rule).  
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