Abstracts of the International Conference

ACOUSTIC CLIMATE INSIDE AND OUTSIDE BUILDINGS

held in conjunction with the workshop

“Aircraft Noise Reduction by Flow Control and Active / Adaptive Techniques”

elSBN 978-609-457-704-8
23-26 September, 2014, Vilnius, Lithuania Abstract Number: acoustic.17

http://www.acoustic.vgtu. It/

INCREASE AND DECREASE OF THE NOISE RADIATED BY HIGH -REYNOLDS-
NUMBER SUBSONIC JETS THROUGH PLASMA SYNTHETIC JET A CTUATION

Olivier Léon?, Daniel Caruand, Thomas Castelair

L20ONERA, The French Aerospace Lab, 2 av. EdouarcBdld55 Toulouse, France
) 3Laboratoire de Mécanique des Fluides et d’AcoustitMFA),
Ecole Centrale de Lyon (ECL), 36 av. Guy de Colian§9134 Ecully, France

E-mail: Olivier.Leon@onera.fr

Abstract. Since the discovery of the existence of largesstigctures in high-Reynolds-number free shear flfiysand
their role in the radiation of noise to the farldig5], the control of their dynamics has been ampartant topic for the
aeroacoustic community. In the past decades, actbise reduction techniques have been extensivelgstigated.
Continuous fluidic microjets have shown to decrethgefar-field overall sound pressure levels of abbh& dB in the aft
region @ = 30°) of high-Reynolds number high-subsonic j8is Ih order to prevent any thrust penalty duedntmuous air
injection, other types of actuation are currengjnly investigated. Recently, Samimy et al. [6] hdgeeloped localized arc
filament plasma (LAFPA) actuators for jet noise troh Applied on a M= 0.9, they reported jet noise reduction in the af
region of-0.5 dB to—1.0 dB for actuation Strouhal numbers between 1db2a0. The present study investigates the use of
Plasma Synthetic Jet (PSJ) actuators for the actodification of the noise radiated by high-Reynaldsnber subsonic jets.

Experimental setups.

A. PSJ actuator The Plasma Synthetic Jet (PSJatacthas been developed at ONERA in the last deaaden actuator
providing high control authority over high-speedidngh-Reynolds-number flows [2]. Similar to the 8@&t developed at
Hopkins University [4], it relies on an energy dsjtion in a cavity through electrical breakdownvbetn too electrodes,
shown in figure 1a. High temperature and pressaeein the cavity generates a transient exhauairghrough an orifice of
the cavity. Equilibrium in the cavity is then reved after a suction phase. Depending on the elgicand geometrical
design, this actuator may be driven at frequenge® 4 kHz. For moderate actuation frequenciesisient exit velocities of
about 150 m/s can be reached.

@)
Figure 1: Photographs of (a) the PSJ actuatoranth¢ D = 50 mm nozzle equipped with 12 PSJ actaat

B. Jet exit conditions. In this study, a set of IRIRctuators were evenly distributed around thek thip of a D = 50 mm
nozzle, as shown in figure 1b. Various jet exitditions were investigated, with exit Mach numbersging from M= 0.4

up to M; =0.9. The definition of the Strouhal number relien the jet exit diameter D and the jet exit vityot); as
Stess= fesP/U;. Consequently, because of the nozzle diameter hedattuation frequency limit of the PSJ actuator,
actuation Strouhal numbers close to 1.0 could drlyreached for jet Mach numbers close tp=MD.6. The Reynolds
numbers of these turbulent jets are aroung REx10.
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Fig. 2. Variations of broadband overall sound pues$evels AOASPL) in dB at (aPp = 30° and (b)® = 90° between
reference cases and actuated cases at variousi@ctBaouhal numbers &f; azimuthal actuation (m = 0 and m = 6) and for
two campaigns (ECL-LMFA and ONERA), for;M 0.6.

Results.

Aerodynamic and acoustic measurements were perébbuth in the ECL-LMFA anechoic jet facility and fhe ONERA
Toulouse jet facility, as part of the European gctg§ ORINOCO and OPENAIR. PIV measurements and hat-wir
anemometry showed large aerodynamic interactiohgda®m the microjets and the main subsonic jetss& meeasurements
allowed to shed light on the coherent structuragegeed by such PSJ actuation. Following thesedgeemic studies, an
analysis of the far-field noise of these actuattd yvas conducted. Despite some slight differeircgst exit conditions,
microphones radial location and actuator properpast of the acoustic results obtained both inLik-A anechoic facility
and in the ONERA jet facility are presented togetinefigure 2. Large broadband acoustic responsth@fiets studied in
both facilities was observed for actuation Strouhahbers close to 0.3. Axisymetric actuation (m)p@vided the greatest
increase in OASPL of about 3 dB @t= 30°and less than 4 dB @t= 90°. Driving every other PSJ actuator 180° out-of-
phase (m = 6) provided a less important acousiparse of the jets in all directions in terms afastband OASPL, but
allowed an apparent doubling of the actuation $tabunumber, observed on the far-field spectra. Véitich actuation
strategy, slight noise decrease of abeu8 dB was observed &t = 20° (not shown here) on a;™ 0.6 jet for actuation
Strouhal numbers greater than 0.6, correspondiag @pparent actuation Strouhal number of 1.2.

Conclusions.

Aerodynamic and acoustic measurements were perfbrore high-Reynolds-number subsonic jets actuatedh AR
distributed Plasma Synthetic Jet (JSP) actuatoits, an emphasis on a ;M= 0.6 jet. Large aerodynamic and acoustic
response of these jets were observed in two diffefiailities, suggesting a certain robustnesshef dction. The present
results show that PSJ actuation is able to infleghe aeroacoustic sources of high-Reynolds-numiizosic jets, and to
modify their far-field noise, with the capability both increasing and reducing the broadband noise.
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