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Abstract. The probability of failure of a load bearing steel member is investigated using a new type of global sensitiv-
ity analysis subordinated to contrasts. The main objective of the probability-oriented sensitivity analysis is structural 
reliability. The structural reliability methodology uses random variables as inputs. The subject of interest is the identification 
of those random variables that are most important when the limit state of a steel bridge member is reached. The limit state is 
defined by the occurrence of brittle fracture, which results from stress changes caused by multiple repeated loads. The prop-
agation of a single-edge crack from initial to critical size is analysed using linear fracture mechanics. The failure probability 
and sensitivity indices are calculated using sampling-based methods. The sensitivity indices are estimated using dou-
ble-nested-loop simulation of the Latin Hypercube Sampling method. New findings indicate that interaction effects among 
input variables strongly influence the probability of failure especially at the beginning of the operating period. 
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Introduction  

Sensitivity analysis (SA) is an effective method for quantifying the contribution of uncertainties of input variables to 
the uncertainties of the output variables of the mathematical model (Saltelli, Chan, & Scott, 2004). Various ap-
proaches to calculating SA have been proposed, see state-of-the-art reviews (Iooss & Lemaitre, 2015; Wei, Lu, & 
Song, 2015; Borgonovo & Plischke, 2016; Ferretti, Saltelli, & Tarantola, 2016; Saltelli et al., 2019). An overview of 
SA methods based on multiple criteria decision-making is given in (e.g. Antucheviciene, Kala, Marzouk, & 
Vaidogas, 2015; Kaklauskas et al., 2018). 

Commonly implemented SA methods can be summarized as non-parametric techniques (e.g. Saltelli & 
Marivoet, 1990), screening approaches (e.g. Xiao, Lu, & Xu, 2016), Sobol’s variance-based method (Sobol’, 1993, 
2001), moment-independent methods (e.g. Borgonovo, Castaings, & Tarantola, 2012; Yun, Lu, Jiang, & Zhang, 
2018a), and many others. 

Sobol sensitivity analysis (SSA) (Sobol’, 1993, 2001) is one of the most comprehensive SA techniques, because 
it provides sophisticated measurements of all combinations of input effects on the output of non-linear and 
non-additive stochastic models. SSA consider the whole variation and interaction range of the inputs (Saltelli et al., 
2004) and are therefore referred to as global SA (GSA). GSA are necessary to performing a valid SA when models 
feature nonlinearities and interactions, see for e.g. models in structural mechanics (e.g. Kala & Valeš, 2017, 2018) or 
geotechnics (e.g. Chalmovský et al., 2017; Štefaňák, Kala, Miča, & Norkus, 2018). 

SSA defines sensitivity indices using the first two statistical moments (Saltelli et al., 2004). It seems very intui-
tive that for the estimation of the mean value or variance, the order of importance of the input variables may be dif-
ferent than for the estimation of the quantile or probability, which are the basic indicators of structural reliability. 
Global reliability sensitivity analysis algorithms based on the classification of model output (e.g. Yun, Lu, Zhan, & 
Jiang, 2018b; Xiao & Lu, 2017), which measure the effect of each model input variable on the failure probability, 
have been developed with this motivation. In cases where reliability is given by exceeding the quantile value, sensi-
tivity measurements based directly on the quantiles of model outputs may be more appropriate (Maume-Deschamps 
& Niang, 2018; Kala, 2019a; Kucherenko, Song, & Wang, 2019). 

Reliability-oriented GSA provides information on how one input variable on average influences the effect of 
another input variable on the failure of the structure. The basic indicator of reliability in structural mechanics is fail-
ure probability. In order to describe structural reliability, GSA should be oriented directly on failure probability ra-
ther than on the variance or quantile of the model output. 
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This article focuses on reliability-oriented GSA (Kala, 2019b), which uses contrast (or loss) functions for sensi-
tivity measurements (Fort, Klein, & Rachdi, 2016). It can be noted that the contrast function is a very useful object in 
the Statistical Learning Theory (e.g. Massart, 2003), where it defines estimation procedures of some scalar or func-
tional feature associated to a random output variable Y. The goal of the presented GSA is the sensitivity measurement 
of the failure probability as a basic indicator of reliability. 

Estimation of probability-oriented contrast indices 

In structural reliability analysis, the failure probability Pf is a quantity of interest. Let us consider a computational 
model in the form Y = f(X1, X2, ... , XM), with Y a scalar. The input variables (X1, X2, ... , XM) are supposed to be ran-
dom variables described using identified probability distributions, which reflect the uncertain knowledge of material 
parameters, load actions, etc. Failure occurs if Y < 0. The contrast function  associated with 

  0fP P Y   (1) 

can be written using parameter  as 

       20ψ , 1YE Y E       . (2) 

The sensitivity measurement is based on the assumption that  is a contrast associated with a parameter , 
where 

  *

θ
Argminψ   . (3) 

Based on (Fort et al., 2016), the first order sensitivity index subordinated to the contrast (main effect) can be 
expressed as 
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The parameter  has the significance of failure probability and can be estimated from (1) using the Monte Car-
lo (MC) method. For the unconditional failure probability, the minimum value of contrast () can be estimated 
using K runs of the MC method as 
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For the conditional failure probability, the second member in the numerator (4) can be calculated similarly us-
ing double-nested-loop simulation of MC, where conditional failure probability is calculated for K runs of Y using 
random variables Xi (nested loop), where Xi is a fixed (constant) run from L runs of MC (outer loop). The second 
order contrast index Pij can be expressed as 
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and estimated using MC analogously. The higher-order probability contrast indices can be expressed analogously. 
The sum of all sensitivity indices must be equal to one. 

 123...... 1i ij ijk M
i i j i i j i k j

P P P P
  

         . (7) 

This contrast-based global sensitivity analysis of probability is referred to as PSA in the article. PSA is applied 
to the fatigue limit state of a steel member with a small initial edge crack. 

Fatigue crack propagation using linear fracture mechanics 

The failure type considered in this article is brittle fracture of the steel member. The propagation of an initial crack of 
magnitude a0 to the critical crack acr is analysed using linear elastic fracture mechanics. The Paris-Erdogan law (Par-
is & Erdogan, 1963) relates the stress intensity factor range to sub-critical crack growth under the fatigue stress re-
gime. 
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  mda
C K

dN
   , (8) 

where a is the crack length, N is the number of loading cycles and da/dN is the crack propagation rate, which denotes 
the crack growth for a load cycle, m and C are material-related parameters dependent on environment, stress ratio, 
etc. Parameter C can be calculated as 

   1 2log C c m c   , (9) 

where c1, c2 can be considered for steel grade S235 as c1 = –11.141, c2 = –0.507 (e.g. Kala, 2018). The range of stress 
intensity factor ΔK can be determined by Broek: 

  EK a F a      , (10) 

where Δ is the equivalent quasi–constant stress range. The calibration function F(a/W) for pure bending is used. 
F(a/W) from experimental research (Seitl, Miarka, & Kala, 2018) is in the form: 

  
2 3

1.114 1 0.806 2.4704 1.01643 , 0.01, 0.5
a a a a a

F
W W W W W

                    
         

. (11) 

The resistance Rcr can be calculated as the accumulation of damage related to the growth from a0 into acr. 
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Failure occurs when Rcr is equal to the load effects At. 

 m
t EA C N    , (13) 

where N is the total number of cycles reached at the time the crack reaches its critical length acr = 0.5W. The value of 
action At is a function of time, because the cumulative effect of traffic N is a non-decreasing function in time. The 
reliability function can then be written as: 

 cr tY R A  , (14) 

where W is the specimen width in the direction of crack propagation. 

Computation of sensitivity indices 

The initial length a0 of the single-edge crack is considered using a log-normal probability density function (pdf) with 
mean value of 0.2 mm and standard deviation of 0.06 mm (Maljaars & Vrouwenvelder, 2014; Kala, 2018), see Ta-
ble 1. The other input random variables with Gauss pdf listed in Table 1 are considered acc. to (Kala, 2017, 2018). 

Table 1. Input random quantities 

Description Symbol Pdf Unit Mean value Coef. of variation 

Initial crack length a0 log-normal mm 0.2 0.3 

Specimen width W Gauss mm 400 0.05 

Paris exponent m Gauss – 3 0.01 

Equivalent stress range  Gauss MPa 30 0.1 

Stress peaks per year N Gauss – 106 0.1 

 
For example, for 50 years of bridge operation random variable N has a mean value of 50×106 and variation co-

efficient of 50×0.1. The Latin Hypercube Sampling (LHS) method (McKey, Beckman, & Conover, 1979; Iman & 
Conover, 1980) is used to evaluate all sensitivity indices in the decomposition (7). Each index is estimated using 
K = 70E6, L = 2E4 of LHS runs. 

The results of the sensitivity analysis are shown in Figure 1. Equivalent stress range  has a crucial influence 
on Pf at both times of bridge operation, but is also involved in interactions with variables a0, m, N, see Figure 1. The 
second dominant variable is the initial crack length a0. The sum of first and second order sensitivity indices 
P+Pa0+P a0 is approximately 56% at the time of 50 years and 77% at the time of 100 years. All interaction effects 
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calculated as 1–i Pi are approximately 68% at the time of 50 years and 30% at the time of 100 years. Specimen 
width W is identified as a non-influential variable, which may have any variation coefficient not influencing Pf, prac-
tically zero variation coefficient can be considered. The critical length acr = 0.5W should also have a negligible in-
fluence on Pf (similarly as W). However, this should be verified for other statistical models of acr, whose variation 
coefficients can be discussed with higher values or other types of pdfs. 

 

 

Figure 1. Global sensitivity indices 

PSA has identified relatively strong interaction effects, which are unusual in SSA of limit states of single 
members (e.g. Kala & Valeš, 2017, 2018). On the contrary, strong interaction effects can easily be detected by SSA 
in frame structures (e.g. Kala, 2012). For the probability assessment of the limit states, it may be interesting to com-
pare the results of SSA and PSA in cases where SSA identifies non-negligible interactions effects. 

Currently, there are many types of GSA and it is not easy to find time-proven practices suitable for the given 
type of task (Saltelli et al., 2019). Reliability-oriented GSA must be based on a sensitivity measurement that directly 
analyses the probability of failure as a basic indicator of reliability. It may be noted that other suitable methods exist 
for this purpose (e.g. Xiao & Lu, 2017; Wang, Xiao, & Lu, 2019) and probability analysis is not the only method for 
measuring structural reliability. Structural design according to the EUROCODE standard is based on the so-called 
semi-probability method of partial safety factors, in which the design values can be verified using design quantiles. 
Coherent reliability-oriented GSA should ensure that probability-oriented and quantile-oriented sensitivity indices 
form pairs based on the same theoretical basis. Sensitivity indices subordinated to the contrast (Fort et al., 2016) are 
proving to be one of the promising ways of finding coherent reliability-oriented GSA. However, this domain de-
serves much more additional work in order to make reliability-oriented GSA a useful and practical tool. 

The equivalent stress range – some observations 

The equivalent stress range Δ is identified as the dominant variable having the most effect on Pf, see Figure 1. In 
general, if the histogram of variable stress range amplitude Δ is known, the equivalent stress range Δ can be cal-
culated as: 
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E h

hH 

 
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 
 , (15) 

where Δh are random realizations of the variable stress range (e.g. Kala, 2008), which are obtained from measure-
ments of a real bridge. Theoretically, exponential or Rayleigh pdfs can be assumed for Δ. Rayleigh pdf is a 
one-parameter distribution (see Figure 2), which can be written as: 

  
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Let Δ have a Gauss pdf according to Table 1, Δ has a Rayleigh pdf with parameter p and m = 3. For each 
Δ, parameter p can be found by inverse analysis from (15) using the bisection method. The cut-off limit below 
which stress ranges of the design spectrum do not contributc to the calculated cumulative damage is not applied in 
this study. For 50 thousand LHS runs of Δ we can find 50 thousand random realizations of p, see blue line on Fig-
ure 3. The dependence between Δ and p is linear. Therefore, if Δ has a Gauss pdf then p also has a Gauss pdf, 
see Figure 3. The statistical uncertainty of Δ can thus be transformed to the uncertainty of parameter p of the Ray-
leigh pdf, see Figure 3. 

 

 

Figure 2. Examples of Rayleigh pdf realizations   Figure 3. The relationship between p and 

Equivalent stress range and average daily truck traffic can be computed based on the created stress-range histo-
gram from long-term monitoring program (Kwon & Frangopol, 2010). Due to loading uncertainties, a probabilistic 
approach considering random uncertainty for load effects can be used to predict stress ranges during fatigue lifetime 
(Kwon & Frangopol, 2010). However, lack of knowledge about the type of pdf of Δ shifts the aleatoric uncertainty 
of Δ to the category of epistemic uncertainties. Then it can be discussed whether the uncertainty of Δ is aleatoric 
or epistemic. Epistemic uncertainty is also known as systematic uncertainty, and is due to things one could in princi-
ple know but doesn't in practice. 

In the presented example, finding epistemic uncertainty is significant, because it is pertinent to the input random 
variable Δ, which was identified as crucial by sensitivity analysis. Reducing epistemic uncertainties to aleatoric 
uncertainties can be based both on the collection of information on the numbers and weight of the axles of moving 
vehicles as well as on model-based prediction of the intensity of traffic flow and static analyses of Δ processed into 
histograms. 

Conclusions  

The example presented in this article shows that sensitivity indices subordinated to contrasts effectively analyse the 
influence of input variables on the probability of failure. Such global sensitivity analysis can be useful for problems 
in which the analysts are interested in the ranking of inputs contributing to the extreme values of the failure probabil-
ity. Such probability-oriented sensitivity measurements are much more valuable for structural reliability than other 
types of sensitivity analyses, which monitor the influence of input variables on the variability of the model output. 

The sensitivity indices subordinated to the contrast contain both individual sensitivity index and interaction 
sensitivity index. These contrast-based global sensitivity analyses of failure probability show interaction effects that 
are unusually strong in comparison with some results of Sobol’s sensitivity analysis aimed at the reliability of struc-
tures. The failure probability is most influenced by the main and interaction effects of the equivalent stress range and 
the initial crack length in both analysed times. The evaluation of the sensitivity analysis at the time of 50 and 100 
years has shown that the sizes of the sensitivity indices and the ranking of importance of the input variables change 
over the lifetime of the bridge. At the time of 100 years, the interaction effects between input variables are weaker 
than at the time of 50 years. 

It can be noted that the evaluation of global sensitivity analysis of small probabilities of failure, which occur af-
ter a short period of operation of a bridge, has high demands on computer CPU time. With this motivation, it would 
be useful to make comparisons with other sensitivity analysis methods focusing, for example, on the reliability index, 
which is a certain alternative to the probability of failure, but has lower demands on the computer CPU time. 
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