dc.contributor.author | Rastenis, Justinas | |
dc.contributor.author | Ramanauskaitė, Simona | |
dc.contributor.author | Suzdalev, Ivan | |
dc.contributor.author | Tunaitytė, Kornelija | |
dc.contributor.author | Janulevičius, Justinas | |
dc.contributor.author | Čenys, Antanas | |
dc.date.accessioned | 2023-09-18T20:42:46Z | |
dc.date.available | 2023-09-18T20:42:46Z | |
dc.date.issued | 2021 | |
dc.identifier.other | (SCOPUS_ID)85102319316 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/151853 | |
dc.description.abstract | Spamming and phishing are two types of emailing that are annoying and unwanted, differing by the potential threat and impact to the user. Automated classification of these categories can increase the users’ awareness as well as to be used for incident investigation prioritization or automated fact gathering. However, currently there are no scientific papers focusing on email classification concerning these two categories of spam and phishing emails. Therefore this paper presents a solution, based on email message body text automated classification into spam and phishing emails. We apply the proposed solution for email classification, written in three languages: English, Russian, and Lithuanian. As most public email datasets almost exclusively collect English emails, we investigate the suitability of automated dataset translation to adapt it to email classification, written in other languages. Experiments on public dataset usage limitations for a specific organization are executed in this paper to evaluate the need of dataset updates for more accurate classification results. | eng |
dc.format | PDF | |
dc.format.extent | p. 1-10 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Scopus | |
dc.relation.isreferencedby | Science Citation Index Expanded (Web of Science) | |
dc.relation.isreferencedby | DOAJ | |
dc.source.uri | https://doi.org/10.3390/electronics10060668 | |
dc.source.uri | https://www.mdpi.com/2079-9292/10/6/668/htm | |
dc.title | Multi-language spam/phishing classification by email body text: Toward automated security incident investigation | |
dc.type | Straipsnis Web of Science DB / Article in Web of Science DB | |
dcterms.accessRights | This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). | |
dcterms.license | Creative Commons – Attribution – 4.0 International | |
dcterms.references | 38 | |
dc.type.pubtype | S1 - Straipsnis Web of Science DB / Web of Science DB article | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.faculty | Fundamentinių mokslų fakultetas / Faculty of Fundamental Sciences | |
dc.contributor.faculty | Antano Gustaičio aviacijos institutas / Antanas Gustaitis Aviation Institute | |
dc.subject.researchfield | T 007 - Informatikos inžinerija / Informatics engineering | |
dc.subject.researchfield | N 009 - Informatika / Computer science | |
dc.subject.vgtuprioritizedfields | IK0101 - Informacijos ir informacinių technologijų sauga / Information and Information Technologies Security | |
dc.subject.ltspecializations | L106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies | |
dc.subject.en | spam | |
dc.subject.en | phishing | |
dc.subject.en | classification | |
dc.subject.en | augmented dataset | |
dc.subject.en | multi-language emails | |
dcterms.sourcetitle | Electronics: Special Issue Cybersecurity and Data Science | |
dc.description.issue | iss. 6 | |
dc.description.volume | vol. 10 | |
dc.publisher.name | MDPI | |
dc.publisher.city | Basel | |
dc.identifier.doi | 2-s2.0-85102319316 | |
dc.identifier.doi | 85102319316 | |
dc.identifier.doi | 1 | |
dc.identifier.doi | 000634332000001 | |
dc.identifier.doi | 10.3390/electronics10060668 | |
dc.identifier.elaba | 87975930 | |