• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Parallel computing for mixed-stable modelling of large data sets

Thumbnail
Date
2015
Author
Belovas, Igoris
Starikovičius, Vadimas
Metadata
Show full item record
Abstract
In this paper, we develop efficient parallel algorithms for the statistical processing of large data sets. Namely, we parallelize the maximum likelihood method for the estimation of parameters of the mixed-stable model. This method is known to be very computationally demanding. Financial German DAX stock index data are used as empirical data in this work. Several hierarchical levels of parallelism were distinguished, analyzed and implemented using OpenMP and MPI library. Parallel performance tests were conducted on the IBM SP6 supercomputer. Obtained performance results show that implemented parallel algorithms are very efficient and scalable on distributed and shared memory systems. Speedups up to 800 times were obtained for 1024 parallel processes. Noticeably, our parallel application is able to efficiently utilize the Simultaneous multithreading (Intel Hyper-Threading) technology in modern processors. This research demonstrates that the application of modern parallel technologies allows a fast and accurate estimation of mixed-stable parameters even for large amounts of data and promotes a wider use of stable modelling for the statistical data processing.
Issue date (year)
2015
URI
https://etalpykla.vilniustech.lt/handle/123456789/151897
Collections
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources [7946]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister