dc.contributor.author | Belovas, Igoris | |
dc.contributor.author | Starikovičius, Vadimas | |
dc.date.accessioned | 2023-09-18T20:42:52Z | |
dc.date.available | 2023-09-18T20:42:52Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 1392-124X | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/151897 | |
dc.description.abstract | In this paper, we develop efficient parallel algorithms for the statistical processing of large data sets. Namely, we parallelize the maximum likelihood method for the estimation of parameters of the mixed-stable model. This method is known to be very computationally demanding. Financial German DAX stock index data are used as empirical data in this work. Several hierarchical levels of parallelism were distinguished, analyzed and implemented using OpenMP and MPI library. Parallel performance tests were conducted on the IBM SP6 supercomputer. Obtained performance results show that implemented parallel algorithms are very efficient and scalable on distributed and shared memory systems. Speedups up to 800 times were obtained for 1024 parallel processes. Noticeably, our parallel application is able to efficiently utilize the Simultaneous multithreading (Intel Hyper-Threading) technology in modern processors. This research demonstrates that the application of modern parallel technologies allows a fast and accurate estimation of mixed-stable parameters even for large amounts of data and promotes a wider use of stable modelling for the statistical data processing. | eng |
dc.format | PDF | |
dc.format.extent | p. 148-154 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | VINITI | |
dc.relation.isreferencedby | INSPEC | |
dc.relation.isreferencedby | Science Citation Index Expanded (Web of Science) | |
dc.subject | FM03 - Fizinių, technologinių ir ekonominių procesų matematiniai modeliai ir metodai / Mathematical models and methods of physical, technological and economic processes | |
dc.title | Parallel computing for mixed-stable modelling of large data sets | |
dc.type | Straipsnis Web of Science DB / Article in Web of Science DB | |
dcterms.references | 20 | |
dc.type.pubtype | S1 - Straipsnis Web of Science DB / Web of Science DB article | |
dc.contributor.institution | Vilniaus universitetas | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.faculty | Fundamentinių mokslų fakultetas / Faculty of Fundamental Sciences | |
dc.contributor.department | Taikomosios informatikos institutas / Institute of Applied Computer Science | |
dc.subject.researchfield | N 001 - Matematika / Mathematics | |
dc.subject.researchfield | N 009 - Informatika / Computer science | |
dc.subject.researchfield | T 007 - Informatikos inžinerija / Informatics engineering | |
dc.subject.ltspecializations | L106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies | |
dc.subject.en | parallel computing and algorithms | |
dc.subject.en | simultaneous multithreading (SMT) | |
dc.subject.en | large data sets | |
dc.subject.en | highfrequency data | |
dc.subject.en | mixed-stable model | |
dc.subject.en | financial modelling. | |
dcterms.sourcetitle | Information technology and control | |
dc.description.issue | nr. 2 | |
dc.description.volume | T. 44 | |
dc.publisher.name | Technologija | |
dc.publisher.city | Kaunas | |
dc.identifier.doi | 10.5755/j01.itc.44.2.6723 | |
dc.identifier.elaba | 8772769 | |