Show simple item record

dc.contributor.authorBelovas, Igoris
dc.contributor.authorStarikovičius, Vadimas
dc.date.accessioned2023-09-18T20:42:52Z
dc.date.available2023-09-18T20:42:52Z
dc.date.issued2015
dc.identifier.issn1392-124X
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/151897
dc.description.abstractIn this paper, we develop efficient parallel algorithms for the statistical processing of large data sets. Namely, we parallelize the maximum likelihood method for the estimation of parameters of the mixed-stable model. This method is known to be very computationally demanding. Financial German DAX stock index data are used as empirical data in this work. Several hierarchical levels of parallelism were distinguished, analyzed and implemented using OpenMP and MPI library. Parallel performance tests were conducted on the IBM SP6 supercomputer. Obtained performance results show that implemented parallel algorithms are very efficient and scalable on distributed and shared memory systems. Speedups up to 800 times were obtained for 1024 parallel processes. Noticeably, our parallel application is able to efficiently utilize the Simultaneous multithreading (Intel Hyper-Threading) technology in modern processors. This research demonstrates that the application of modern parallel technologies allows a fast and accurate estimation of mixed-stable parameters even for large amounts of data and promotes a wider use of stable modelling for the statistical data processing.eng
dc.formatPDF
dc.format.extentp. 148-154
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyVINITI
dc.relation.isreferencedbyINSPEC
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.subjectFM03 - Fizinių, technologinių ir ekonominių procesų matematiniai modeliai ir metodai / Mathematical models and methods of physical, technological and economic processes
dc.titleParallel computing for mixed-stable modelling of large data sets
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.references20
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus universitetas
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.contributor.departmentTaikomosios informatikos institutas / Institute of Applied Computer Science
dc.subject.researchfieldN 001 - Matematika / Mathematics
dc.subject.researchfieldN 009 - Informatika / Computer science
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.enparallel computing and algorithms
dc.subject.ensimultaneous multithreading (SMT)
dc.subject.enlarge data sets
dc.subject.enhighfrequency data
dc.subject.enmixed-stable model
dc.subject.enfinancial modelling.
dcterms.sourcetitleInformation technology and control
dc.description.issuenr. 2
dc.description.volumeT. 44
dc.publisher.nameTechnologija
dc.publisher.cityKaunas
dc.identifier.doi10.5755/j01.itc.44.2.6723
dc.identifier.elaba8772769


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record