Show simple item record

dc.contributor.authorDaniušis, Povilas
dc.contributor.authorValatka, Lukas
dc.contributor.authorJuneja, Shubham
dc.contributor.authorPetkevičius, Linas
dc.date.accessioned2023-09-18T20:43:33Z
dc.date.available2023-09-18T20:43:33Z
dc.date.issued2021
dc.identifier.issn0929-5593
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/152073
dc.description.abstractIn this paper, we focus on the utilisation of reactive trajectory imitation controllers for goal-directed visual navigation in mobile robotics. We propose topological navigation graph (TNG) framework. TNG is an imitation-learning-based topological navigation framework for navigating through environments with intersecting trajectories. It represents the environment as a directed graph composed of perception and action modules. Each vertex of the graph corresponds to a trajectory and is represented by a trajectory identification classifier and a trajectory imitation controller. The edges of TNG correspond to intersections between trajectories and are represented by trajectory intersection recognition classifiers. Having a visually specified goal state, TNG navigates by forming a sequential composition plan of trajectory imitation controllers. We also propose to apply neural object detection architectures for the task of trajectory following by detecting direction of movement. We provide empirical evaluation of the proposed navigation framework and its components both in simulated and real-world environments and demonstrate that TNG allows us to utilise non-goal-directed, imitation-learning methods for goal-directed autonomous navigation.eng
dc.formatPDF
dc.format.extentp. 633-646
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.source.urihttps://link.springer.com/article/10.1007/s10514-021-09980-x
dc.titleTopological navigation graph framework
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.references50
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus Gedimino technikos universitetas Neurotechnology
dc.contributor.institutionNeurotechnology
dc.contributor.institutionNeurotechnology Vilniaus universitetas
dc.contributor.institutionVilniaus universitetas Neurotechnology
dc.contributor.facultyVerslo vadybos fakultetas / Faculty of Business Management
dc.subject.researchfieldN 009 - Informatika / Computer science
dc.subject.engoal-directed autonomous navigation
dc.subject.entopological navigation
dc.subject.enimitation learning
dcterms.sourcetitleAutonomous robots
dc.description.volumevol. 45
dc.publisher.nameSpringer
dc.publisher.cityDordrecht
dc.identifier.doi10.1007/s10514-021-09980-x
dc.identifier.elaba92408164


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record