• Lietuvių
    • English
  • Lietuvių 
    • Lietuvių
    • English
  • Prisijungti
Peržiūrėti įrašą 
  •   DSpace pagrindinis
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • Peržiūrėti įrašą
  •   DSpace pagrindinis
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • Peržiūrėti įrašą
JavaScript is disabled for your browser. Some features of this site may not work without it.

Topological navigation graph framework

Thumbnail
Data
2021
Autorius
Daniušis, Povilas
Valatka, Lukas
Juneja, Shubham
Petkevičius, Linas
Metaduomenys
Rodyti detalų aprašą
Santrauka
In this paper, we focus on the utilisation of reactive trajectory imitation controllers for goal-directed visual navigation in mobile robotics. We propose topological navigation graph (TNG) framework. TNG is an imitation-learning-based topological navigation framework for navigating through environments with intersecting trajectories. It represents the environment as a directed graph composed of perception and action modules. Each vertex of the graph corresponds to a trajectory and is represented by a trajectory identification classifier and a trajectory imitation controller. The edges of TNG correspond to intersections between trajectories and are represented by trajectory intersection recognition classifiers. Having a visually specified goal state, TNG navigates by forming a sequential composition plan of trajectory imitation controllers. We also propose to apply neural object detection architectures for the task of trajectory following by detecting direction of movement. We provide empirical evaluation of the proposed navigation framework and its components both in simulated and real-world environments and demonstrate that TNG allows us to utilise non-goal-directed, imitation-learning methods for goal-directed autonomous navigation.
Paskelbimo data (metai)
2021
URI
https://etalpykla.vilniustech.lt/handle/123456789/152073
Kolekcijos
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources [7946]

 

 

Naršyti

Visame DSpaceRinkiniai ir kolekcijosPagal išleidimo datąAutoriaiAntraštėsTemos / Reikšminiai žodžiai InstitucijaFakultetasKatedra / institutasTipasŠaltinisLeidėjasTipas (PDB/ETD)Mokslo sritisStudijų kryptisVILNIUS TECH mokslinių tyrimų prioritetinės kryptys ir tematikosLietuvos sumanios specializacijosŠi kolekcijaPagal išleidimo datąAutoriaiAntraštėsTemos / Reikšminiai žodžiai InstitucijaFakultetasKatedra / institutasTipasŠaltinisLeidėjasTipas (PDB/ETD)Mokslo sritisStudijų kryptisVILNIUS TECH mokslinių tyrimų prioritetinės kryptys ir tematikosLietuvos sumanios specializacijos

Asmeninė paskyra

PrisijungtiRegistruotis