dc.contributor.author | Čiegis, Raimondas | |
dc.contributor.author | Vabishchevich, Piotr | |
dc.date.accessioned | 2023-09-18T20:44:34Z | |
dc.date.available | 2023-09-18T20:44:34Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/152248 | |
dc.description.abstract | In this paper we develop and investigate numerical algorithms for solving the fractional powers of discrete elliptic operators with Vh a finite element or finite difference approximation space. Our goal is to construct efficient time stepping schemes for the implementation of the method based on the solution of a pseudo-parabolic problem. The second and fourth order approximations are constructed by using two- and three-level schemes. In order to increase the accuracy of approximations the geometric graded time grid is constructed which compensates the singular behavior of the solution for t close to 0. This apriori adaptive grid is compared with aposteriori adaptive grids. Results of numerical experiments are presented, they agree well with the theoretical results. | eng |
dc.format | PDF | |
dc.format.extent | p. 285-292 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.ispartofseries | Lecture Notes in Computational Science and Engineering (LNCSE) vol. 139 1439-7358 2197-7100 | |
dc.relation.isreferencedby | Scopus | |
dc.source.uri | https://doi.org/10.1007/978-3-030-55874-1_27 | |
dc.title | High-order two and three level schemes for solving fractional powers of elliptic operators | |
dc.type | Kitos knygos dalis / A part of other book | |
dcterms.references | 9 | |
dc.type.pubtype | Y7 - Kitos knygos dalis / A part of other book | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.institution | Nuclear Safety Institute, Russian Academy of Sciences | |
dc.contributor.faculty | Fundamentinių mokslų fakultetas / Faculty of Fundamental Sciences | |
dc.subject.researchfield | N 001 - Matematika / Mathematics | |
dc.subject.studydirection | A02 - Taikomoji matematika / Applied mathematics | |
dc.subject.vgtuprioritizedfields | FM0101 - Fizinių, technologinių ir ekonominių procesų matematiniai modeliai / Mathematical models of physical, technological and economic processes | |
dc.subject.ltspecializations | L104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies | |
dc.subject.en | finite difference methods | |
dc.subject.en | nonlocal problems | |
dc.subject.en | stability | |
dcterms.sourcetitle | Numerical mathematics and advanced applications ENUMATH 2019: European conference, Delft University of Technology, Egmond aan Zee, The Netherlands, September 30 - October 4, 2019 | |
dc.publisher.name | Springer | |
dc.publisher.city | Cham | |
dc.identifier.doi | 10.1007/978-3-030-55874-1_27 | |
dc.identifier.elaba | 96058800 | |