Show simple item record

dc.contributor.authorUsevičiūtė, Luiza
dc.contributor.authorBaltrėnaitė-Gedienė, Edita
dc.date.accessioned2023-09-18T16:08:02Z
dc.date.available2023-09-18T16:08:02Z
dc.date.issued2021
dc.identifier.issn1420-2026
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/111539
dc.description.abstractLucas–Washburn equation is a fundamental expression which is used to describe capillary rise in porous materials according to average pore radius, liquid viscosity, surface tension, contact angle and time. However, a traditional equation is overestimating a real capillary rise height of liquid in the material, since it models pores as straight and circular capillaries, though in reality porous materials, such as biochar, have tortuous capillaries with different aperture forms. It is also known that cellulosic materials are characterised by their swelling capacity, which also can affect the process of capillary rise. Therefore, a modified model including a parameter describing the pores’ form and swelling parameters (volumetric swelling, energy loss coefficient and radius of swelled capillary) was developed. Experiments of water capillary rise in the biofilter tubes were conducted: the biochar made from different primary feedstocks, size of particles and modifications with steam of the biomedia. It was shown that the model is suitable for the prediction of short time (until 5 h) water capillary rise process in biochar due to low relative maximum error. Both experimental and modelling results showed that higher biochar porosity, average capillary radius, volumetric swelling and wettability govern higher velocity of capillary rise. Meanwhile, liquids with higher surface tension and dynamic viscosity lower the capillary rise speed in the biochar.eng
dc.formatPDF
dc.format.extentp. 29-43
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyProQuest Central
dc.relation.isreferencedbyCAB Abstracts
dc.relation.isreferencedbyDimensions
dc.rightsLaisvai prieinamas internete
dc.source.urihttps://link.springer.com/article/10.1007/s10666-021-09782-6?wt_mc=Internal.Event.1.SEM.ArticleAuthorOnlineFirst&utm_source=ArticleAuthorOnlineFirst&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorOnlineFirst_20210708
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:100098446/datastreams/MAIN/content
dc.source.uri10.1007/s10666-021-09782-6
dc.titleModelling of a capillary rise height of biochar by modified Lucas–Washburn equation
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.accessRightsOpen access under a CC BY licence (Creative Commons Attribution 4.0 International licence).
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references42
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyAplinkos inžinerijos fakultetas / Faculty of Environmental Engineering
dc.subject.researchfieldT 004 - Aplinkos inžinerija / Environmental engineering
dc.subject.vgtuprioritizedfieldsAE0202 - Aplinkos apsaugos technologijos / Environmental protection technologies
dc.subject.ltspecializationsL104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies
dc.subject.enmodified Lucas–Washburn equation
dc.subject.enheight of capillary rise
dc.subject.enbiochar
dc.subject.envolatile organic and inorganic compounds
dc.subject.enbiofilter
dcterms.sourcetitleEnvironmental modeling & assessment
dc.description.issueiss. 1
dc.description.volumevol. 27
dc.publisher.nameSpringer
dc.publisher.cityDordrecht
dc.identifier.doi000671918800003
dc.identifier.doi10.1007/s10666-021-09782-6
dc.identifier.elaba100098446


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record