Show simple item record

dc.contributor.authorDzemydienė, Dalė
dc.contributor.authorBurinskienė, Aurelija
dc.date.accessioned2023-09-18T16:08:31Z
dc.date.available2023-09-18T16:08:31Z
dc.date.issued2021
dc.identifier.issn1424-8220
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/111714
dc.description.abstractSmart service provision systems can assist in the management of cargo transportation. The development of these systems faces a number of issues that relate to the analysis of numerous factors, which are influenced by the properties of such complex and dynamic systems. The aim of this research was the development of an adaptable smart service provision system that is able to recognize a wide spectrum of contextual information, which is obtained from different services and heterogeneous devices of wireless sensor networks (WSNs). To ensure that the smart service provision system can assist with the analysis of specific cases of unforeseen and unwanted situations during the cargo transportation process, the system must have additional adaptability. To address the adequate provision of contextual data, we examined the problems of multi- dimensional definitions of contextual data and the choice of appropriate artificial intelligence (AI) methods for recognition of contextual information. The objectives relate to prioritizing potential service provision by ensuring the optimal quality of data supply channels and avoiding the flooding of wireless communication channels. The proposed methodology is based on methods of smart system architecture development that integrate the identification of context-aware data, conceptual structures of data warehouses, and algorithms for the recognition of transportation situations based on AI methods. Experimental research is outlined to illustrate the algorithmic analysis of the prototype system using an appropriate simulation environment.eng
dc.formatPDF
dc.format.extentp. 1-22
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.rightsLaisvai prieinamas internete
dc.source.urihttps://doi.org/10.3390/s21155140
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:101335126/datastreams/MAIN/content
dc.titleIntegration of context awareness in smart service provision system based on wireless sensor networks for sustainable cargo transportation
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.accessRightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/)
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references47
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus Gedimino technikos universitetas Vilniaus universitetas
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyVerslo vadybos fakultetas / Faculty of Business Management
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.researchfieldS 003 - Vadyba / Management
dc.subject.researchfieldN 009 - Informatika / Computer science
dc.subject.studydirectionJ09 - Informacijos paslaugos / Information services
dc.subject.studydirectionB04 - Informatikos inžinerija / Informatics engineering
dc.subject.studydirectionL02 - Vadyba / Management studies
dc.subject.vgtuprioritizedfieldsIK0303 - Dirbtinio intelekto ir sprendimų priėmimo sistemos / Artificial intelligence and decision support systems
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.ensmart service provision system
dc.subject.encontext-aware services
dc.subject.enwireless sensor networks (WSNs)
dc.subject.enin-formation communication technologies (ICTs)
dc.subject.encargo transportation
dcterms.sourcetitleSensors: Special Issue Artificial Intelligence and Internet of Things in Autonomous Vehicles
dc.description.issueiss. 15
dc.description.volumevol. 21
dc.publisher.nameMDPI
dc.publisher.cityBasel
dc.identifier.doi000682176600001
dc.identifier.doi10.3390/s21155140
dc.identifier.elaba101335126


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record