Rodyti trumpą aprašą

dc.contributor.authorGribniak, Viktor
dc.contributor.authorRimkus, Arvydas
dc.contributor.authorPlioplys, Linas
dc.contributor.authorMisiūnaitė, Ieva
dc.contributor.authorGarnevičius, Mantas
dc.contributor.authorBoris, Renata
dc.contributor.authorŠapalas, Antanas
dc.date.accessioned2023-09-18T16:08:46Z
dc.date.available2023-09-18T16:08:46Z
dc.date.issued2021
dc.identifier.issn2296-8016
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/111765
dc.description.abstractThis study focuses on the flexural behavior of pultruded glass fiber-reinforced polymer (GFRP) profiles developed for structural applications. Fiber content is a commonly accepted measure for estimating the resistance of such components, and technical datasheets describe this essential parameter. However, its direct implementation to the numerical simulations can face substantial problems because of the limitations of standard test protocols. Furthermore, the fiber mass percentage understandable for producers is unsuitable for typical software considered the volumetric reinforcement content. This manuscript exemplifies the above situation both experimentally and analytically, investigating two GFRP square hollow section (SHS) profiles available at the market. A three-point bending test determines the mechanical performance of the profiles in this experimental program; a digital image correlation system captures deformations and failure mechanisms of the SHS specimens; a standard tensile test defines the material properties. A simplified finite element (FE) model is developed based on the smeared reinforcement concept to predict the stiffness and load-bearing capacity of the profiles. An efficient balance between the prediction accuracy and computation time characterizes the developed FE approach that does not require specific descriptions of reinforcement geometry and refined meshes necessary for modeling the discrete fibers. The proposed FE approach is also used to analyze the fiber efficiency in reinforcing the polymer matrix. The efficiency is understood as the model’s ability to resist mechanical load proportional to the dry filaments’ content and experimental elastic modulus value. Scanning electron microscopy relates the composite microstructure and the mechanical performance of the selected profiles in this study.eng
dc.formatPDF
dc.format.extentp. 1-17
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.rightsLaisvai prieinamas internete
dc.source.urihttp://journal.frontiersin.org/article/10.3389/fmats.2021.746376/full?&utm_source=Email_to_authors_&utm_medium=Email&utm_content=T1_11.5e1_author&utm_campaign=Email_publication&field=&journalName=Frontiers_in_Materials&id=746376
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:104104054/datastreams/MAIN/content
dc.titleAn efficient approach to describe the fiber effect on mechanical performance of pultruded GFRP profiles
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.accessRightsThis is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references52
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyStatybos fakultetas / Faculty of Civil Engineering
dc.contributor.departmentStatinių ir tiltų konstrukcijų institutas / Institute of Building and Bridge Structures
dc.contributor.departmentStatybinių medžiagų institutas / Institute of Building Materials
dc.subject.researchfieldT 008 - Medžiagų inžinerija / Material engineering
dc.subject.researchfieldT 002 - Statybos inžinerija / Construction and engineering
dc.subject.studydirectionE05 - Statybos inžinerija / Civil engineering
dc.subject.studydirectionE10 - Gamybos inžinerija / Production and manufacturing engineering
dc.subject.vgtuprioritizedfieldsSD0101 - Pažangios statinių konstrukcijos / Smart building structures
dc.subject.ltspecializationsL104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies
dc.subject.ltspecializationsC101 - Civilinės inžinerijos mokslo centras /
dc.subject.enGFRP profile
dc.subject.enmicrostructure
dc.subject.enfiber volume
dc.subject.endeformations
dc.subject.enload-bearing capacity
dc.subject.enfinite element modeling
dcterms.sourcetitleFrontiers in materials
dc.description.volumevol. 8
dc.publisher.nameFrontiers Media SA
dc.publisher.cityLausanne
dc.identifier.doi000717555900001
dc.identifier.doi10.3389/fmats.2021.746376
dc.identifier.elaba104104054


Šio įrašo failai

Thumbnail

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą