dc.contributor.author | Gribniak, Viktor | |
dc.contributor.author | Rimkus, Arvydas | |
dc.contributor.author | Plioplys, Linas | |
dc.contributor.author | Misiūnaitė, Ieva | |
dc.contributor.author | Garnevičius, Mantas | |
dc.contributor.author | Boris, Renata | |
dc.contributor.author | Šapalas, Antanas | |
dc.date.accessioned | 2023-09-18T16:08:46Z | |
dc.date.available | 2023-09-18T16:08:46Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 2296-8016 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/111765 | |
dc.description.abstract | This study focuses on the flexural behavior of pultruded glass fiber-reinforced polymer (GFRP) profiles developed for structural applications. Fiber content is a commonly accepted measure for estimating the resistance of such components, and technical datasheets describe this essential parameter. However, its direct implementation to the numerical simulations can face substantial problems because of the limitations of standard test protocols. Furthermore, the fiber mass percentage understandable for producers is unsuitable for typical software considered the volumetric reinforcement content. This manuscript exemplifies the above situation both experimentally and analytically, investigating two GFRP square hollow section (SHS) profiles available at the market. A three-point bending test determines the mechanical performance of the profiles in this experimental program; a digital image correlation system captures deformations and failure mechanisms of the SHS specimens; a standard tensile test defines the material properties. A simplified finite element (FE) model is developed based on the smeared reinforcement concept to predict the stiffness and load-bearing capacity of the profiles. An efficient balance between the prediction accuracy and computation time characterizes the developed FE approach that does not require specific descriptions of reinforcement geometry and refined meshes necessary for modeling the discrete fibers. The proposed FE approach is also used to analyze the fiber efficiency in reinforcing the polymer matrix. The efficiency is understood as the model’s ability to resist mechanical load proportional to the dry filaments’ content and experimental elastic modulus value. Scanning electron microscopy relates the composite microstructure and the mechanical performance of the selected profiles in this study. | eng |
dc.format | PDF | |
dc.format.extent | p. 1-17 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Science Citation Index Expanded (Web of Science) | |
dc.rights | Laisvai prieinamas internete | |
dc.source.uri | http://journal.frontiersin.org/article/10.3389/fmats.2021.746376/full?&utm_source=Email_to_authors_&utm_medium=Email&utm_content=T1_11.5e1_author&utm_campaign=Email_publication&field=&journalName=Frontiers_in_Materials&id=746376 | |
dc.source.uri | https://talpykla.elaba.lt/elaba-fedora/objects/elaba:104104054/datastreams/MAIN/content | |
dc.title | An efficient approach to describe the fiber effect on mechanical performance of pultruded GFRP profiles | |
dc.type | Straipsnis Web of Science DB / Article in Web of Science DB | |
dcterms.accessRights | This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms. | |
dcterms.license | Creative Commons – Attribution – 4.0 International | |
dcterms.references | 52 | |
dc.type.pubtype | S1 - Straipsnis Web of Science DB / Web of Science DB article | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.faculty | Statybos fakultetas / Faculty of Civil Engineering | |
dc.contributor.department | Statinių ir tiltų konstrukcijų institutas / Institute of Building and Bridge Structures | |
dc.contributor.department | Statybinių medžiagų institutas / Institute of Building Materials | |
dc.subject.researchfield | T 008 - Medžiagų inžinerija / Material engineering | |
dc.subject.researchfield | T 002 - Statybos inžinerija / Construction and engineering | |
dc.subject.studydirection | E05 - Statybos inžinerija / Civil engineering | |
dc.subject.studydirection | E10 - Gamybos inžinerija / Production and manufacturing engineering | |
dc.subject.vgtuprioritizedfields | SD0101 - Pažangios statinių konstrukcijos / Smart building structures | |
dc.subject.ltspecializations | L104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies | |
dc.subject.ltspecializations | C101 - Civilinės inžinerijos mokslo centras / | |
dc.subject.en | GFRP profile | |
dc.subject.en | microstructure | |
dc.subject.en | fiber volume | |
dc.subject.en | deformations | |
dc.subject.en | load-bearing capacity | |
dc.subject.en | finite element modeling | |
dcterms.sourcetitle | Frontiers in materials | |
dc.description.volume | vol. 8 | |
dc.publisher.name | Frontiers Media SA | |
dc.publisher.city | Lausanne | |
dc.identifier.doi | 000717555900001 | |
dc.identifier.doi | 10.3389/fmats.2021.746376 | |
dc.identifier.elaba | 104104054 | |