Rodyti trumpą aprašą

dc.contributor.authorMirsanjari, Mir Mehrdad
dc.contributor.authorSužiedelytė Visockienė, Jūratė
dc.contributor.authorMohammadyari, Fatemeh
dc.contributor.authorZarandian, Ardavan
dc.date.accessioned2023-09-18T16:08:48Z
dc.date.available2023-09-18T16:08:48Z
dc.date.issued2021
dc.identifier.issn1898-6196
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/111773
dc.description.abstractThe present study aimed to analyse changes in the land cover of Vilnius city and its surrounding areas and propose a scenario for their future changes using an Artificial Neural Network. The land cover dynamics modelling was based on a multilayer perceptron neural network. Landscape metrics at a class and landscape level were evaluated to determine the amount of changes in the land uses. As the results showed, the Built-up area class increased, while the forest (Semi forest and Dense forest) classes decreased during the period from 1999 to 2019. The predicted scenario showed a considerable increase of about 60 % in the Built-up area until 2039. The vegetation plant areas consist about 47 % of all the area in 2019, but it will be 36 % in 2039, if this trend (urban expansion) continues in the further. The findings further indicated the major urban expansion in the vegetation areas. However, Built-up area would expand over Semi forest land and Dense forest land, with a large part of them changed into built- up areas.eng
dc.formatPDF
dc.format.extentp. 429-447
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyINSPEC
dc.relation.isreferencedbyJ-Gate
dc.relation.isreferencedbyDimensions
dc.relation.isreferencedbyBazTech
dc.relation.isreferencedbyCABI (abstracts)
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.rightsLaisvai prieinamas internete
dc.source.urihttps://www.sciendo.com/article/10.2478/eces-2021-0029
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:108284748/datastreams/MAIN/content
dc.titleModelling of expansion changes of Vilnius city area and impacts on landscape patterns using an Artificial Neural Network
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.accessRightsThis work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
dcterms.licenseCreative Commons – Attribution – NonCommercial – NoDerivatives – 3.0 Unported
dcterms.references59
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionMalayer University
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.institutionResearcher Center for Environmental and Sustainable Development (RCESD); Tehran
dc.contributor.facultyAplinkos inžinerijos fakultetas / Faculty of Environmental Engineering
dc.subject.researchfieldT 010 - Matavimų inžinerija / Measurement engineering
dc.subject.researchfieldT 004 - Aplinkos inžinerija / Environmental engineering
dc.subject.studydirectionE04 - Matavimų inžinerija / Measurement engineering
dc.subject.vgtuprioritizedfieldsSD05 - Geodezinės technologijos / Geodetic technologies
dc.subject.ltspecializationsL104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies
dc.subject.enland cover land change modeller
dc.subject.enArtificial Neural Network
dc.subject.enMarkov chain
dc.subject.enurban expansion
dc.subject.enlandscape patterns.
dcterms.sourcetitleEcological chemistry and engineering S-Chemia i inzynieria ekologiczna S
dc.description.issueiss. 3
dc.description.volumevol. 28
dc.publisher.nameDe Gruyter
dc.publisher.cityWarsaw
dc.identifier.doi000720937300009
dc.identifier.doi10.2478/eces-2021-0029
dc.identifier.elaba108284748


Šio įrašo failai

Thumbnail

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą