dc.contributor.author | Mirsanjari, Mir Mehrdad | |
dc.contributor.author | Sužiedelytė Visockienė, Jūratė | |
dc.contributor.author | Mohammadyari, Fatemeh | |
dc.contributor.author | Zarandian, Ardavan | |
dc.date.accessioned | 2023-09-18T16:08:48Z | |
dc.date.available | 2023-09-18T16:08:48Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 1898-6196 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/111773 | |
dc.description.abstract | The present study aimed to analyse changes in the land cover of Vilnius city and its surrounding areas and propose a scenario for their future changes using an Artificial Neural Network. The land cover dynamics modelling was based on a multilayer perceptron neural network. Landscape metrics at a class and landscape level were evaluated to determine the amount of changes in the land uses. As the results showed, the Built-up area class increased, while the forest (Semi forest and Dense forest) classes decreased during the period from 1999 to 2019. The predicted scenario showed a considerable increase of about 60 % in the Built-up area until 2039. The vegetation plant areas consist about 47 % of all the area in 2019, but it will be 36 % in 2039, if this trend (urban expansion) continues in the further. The findings further indicated the major urban expansion in the vegetation areas. However, Built-up area would expand over Semi forest land and Dense forest land, with a large part of them changed into built- up areas. | eng |
dc.format | PDF | |
dc.format.extent | p. 429-447 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Scopus | |
dc.relation.isreferencedby | INSPEC | |
dc.relation.isreferencedby | J-Gate | |
dc.relation.isreferencedby | Dimensions | |
dc.relation.isreferencedby | BazTech | |
dc.relation.isreferencedby | CABI (abstracts) | |
dc.relation.isreferencedby | Science Citation Index Expanded (Web of Science) | |
dc.rights | Laisvai prieinamas internete | |
dc.source.uri | https://www.sciendo.com/article/10.2478/eces-2021-0029 | |
dc.source.uri | https://talpykla.elaba.lt/elaba-fedora/objects/elaba:108284748/datastreams/MAIN/content | |
dc.title | Modelling of expansion changes of Vilnius city area and impacts on landscape patterns using an Artificial Neural Network | |
dc.type | Straipsnis Web of Science DB / Article in Web of Science DB | |
dcterms.accessRights | This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. | |
dcterms.license | Creative Commons – Attribution – NonCommercial – NoDerivatives – 3.0 Unported | |
dcterms.references | 59 | |
dc.type.pubtype | S1 - Straipsnis Web of Science DB / Web of Science DB article | |
dc.contributor.institution | Malayer University | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.institution | Researcher Center for Environmental and Sustainable Development (RCESD); Tehran | |
dc.contributor.faculty | Aplinkos inžinerijos fakultetas / Faculty of Environmental Engineering | |
dc.subject.researchfield | T 010 - Matavimų inžinerija / Measurement engineering | |
dc.subject.researchfield | T 004 - Aplinkos inžinerija / Environmental engineering | |
dc.subject.studydirection | E04 - Matavimų inžinerija / Measurement engineering | |
dc.subject.vgtuprioritizedfields | SD05 - Geodezinės technologijos / Geodetic technologies | |
dc.subject.ltspecializations | L104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies | |
dc.subject.en | land cover land change modeller | |
dc.subject.en | Artificial Neural Network | |
dc.subject.en | Markov chain | |
dc.subject.en | urban expansion | |
dc.subject.en | landscape patterns. | |
dcterms.sourcetitle | Ecological chemistry and engineering S-Chemia i inzynieria ekologiczna S | |
dc.description.issue | iss. 3 | |
dc.description.volume | vol. 28 | |
dc.publisher.name | De Gruyter | |
dc.publisher.city | Warsaw | |
dc.identifier.doi | 000720937300009 | |
dc.identifier.doi | 10.2478/eces-2021-0029 | |
dc.identifier.elaba | 108284748 | |