Show simple item record

dc.contributor.authorPetkevič, Romuald
dc.contributor.authorJočbalis, Giedrius
dc.contributor.authorSteponavičiūtė, Ada
dc.contributor.authorStravinskas, Karolis
dc.contributor.authorRomanov, Aleksej
dc.contributor.authorKačianauskas, Rimantas
dc.contributor.authorBorodinas, Sergejus
dc.contributor.authorMordas, Genrik
dc.date.accessioned2023-09-18T16:11:00Z
dc.date.available2023-09-18T16:11:00Z
dc.date.issued2021
dc.identifier.other(SCOPUS_ID)85119627325
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/112167
dc.description.abstractMetal additive manufacturing has received much attention in the past few decades, and it offers a variety of technologies for three-dimensional object production. One of such technologies, allowing large-sized object production, is laser-assisted metal deposition, the limits of which are determined by the capabilities of the positioning system. The already-existing nozzles have either a relatively low build rate or a poor resolution. The goal of this work is to develop a new nozzle with a centered particle beam at high velocity for the laser-assisted metal additive manufacturing technologies. Scientific challenges are addressed with regards to the fluid dynamics, the particle-substrate contact, and tracking of the thermodynamic state during contact. In this paper, two nozzles based on the de Laval geometry with Witoszynski and Bicubic curves of convergence zone were designed; the results showed that the average flow velocity in a Bicubic outlet curve nozzle is around 615 m/s and in Witoszynski this is 435 m/s. Investigation of particle beam formation for the Bicubic curve geometry revealed that small particles have the highest velocity and the lowest total force at the nozzle outlet. Fine particles have a shorter response time, and therefore, a smaller dispersion area. The elasto-plastic particle-surface contact showed that particles of diameter limited up to 3 µm are able to reach experimentally obtained critical velocity without additional heating. For particle sizes above 10 µm, additional heating is needed for deposition. The maximum coefficient of restitution (COR) is achieved with a particle size of 30 µm; smaller particles are characterized by the values of COR, which are lower due to a relatively high velocity. Particles larger than 30 µm are scalable, characterized by a small change in velocity and a rise in temperature as their mass increases.eng
dc.formatPDF
dc.format.extentp. 1-17
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.source.urihttps://www.mdpi.com/2227-7390/9/22/2913
dc.titleNumerical study of powder flow nozzle for laser-assisted metal deposition
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.accessRightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references38
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionValstybinis mokslinių tyrimų institutas Fizinių ir technologijos mokslų centras
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.institutionPĮ “J.&A. Romanovų”
dc.contributor.facultyStatybos fakultetas / Faculty of Civil Engineering
dc.subject.researchfieldT 008 - Medžiagų inžinerija / Material engineering
dc.subject.researchfieldT 009 - Mechanikos inžinerija / Mechanical enginering
dc.subject.vgtuprioritizedfieldsFM0101 - Fizinių, technologinių ir ekonominių procesų matematiniai modeliai / Mathematical models of physical, technological and economic processes
dc.subject.ltspecializationsL104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies
dc.subject.enlaser
dc.subject.enadditive manufacturing
dc.subject.enmetal deposition
dc.subject.ennozzle
dc.subject.enparticle beam formation
dc.subject.encopper particles
dc.subject.enelasto-plastic impact
dcterms.sourcetitleMathematics: Special Issue Numerical Analysis and Scientific Computing
dc.description.issueiss. 22
dc.description.volumevol. 9
dc.publisher.nameMDPI
dc.publisher.cityBasel
dc.identifier.doi2-s2.0-85119627325
dc.identifier.doi85119627325
dc.identifier.doi1
dc.identifier.doi132164547
dc.identifier.doi000731490100001
dc.identifier.doi10.3390/math9222913
dc.identifier.elaba112622404


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record