dc.contributor.author | Kalibatienė, Diana | |
dc.contributor.author | Miliauskaitė, Jolanta | |
dc.contributor.author | Dzemydienė, Dalė | |
dc.contributor.author | Maskeliūnas, Saulius | |
dc.date.accessioned | 2023-09-18T16:11:47Z | |
dc.date.available | 2023-09-18T16:11:47Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 0868-4952 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/112268 | |
dc.description.abstract | Nowadays, there is a lack of smart marine monitoring systems, which have possibilities to integrate multi-dimensional components for monitoring and predicting marine water quality and making decisions for their optimal operations with minimal human intervention. This research aims to extend the smart coastal marine monitoring by proposing a solar energy planning and control component. The proposed approach involves the adaptive neuro-fuzzy inference system (ANFIS) for the wireless buoys, working online during the whole year in the Baltic Sea near the Lithuanian coast. The usage of our proposed fuzzy solar energy planning and control components allows us to prolong the lifespan of batteries in buoys, so it has a positive impact on sustainable development. The novelty and advantage of the proposed approach lie in establishing the ANFIS-based model to predict and control solar energy in a buoy for different lighting and temperature conditions depending on the four year seasons and to make a decision to transfer the collected data. The energy planning and consumption system for the wireless sensor network of buoys is carefully evaluated, and its prototype is developed. The proposed approach can be practically used for environmental monitoring, providing stakeholders with relevant and timely information for sound decision-making about hydro-meteorological situations in coastal marine water. | eng |
dc.format | PDF | |
dc.format.extent | p. 795-816 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Science Citation Index Expanded (Web of Science) | |
dc.relation.isreferencedby | Social Sciences Citation Index (Web of Science) | |
dc.relation.isreferencedby | Scopus | |
dc.relation.isreferencedby | Current Contents | |
dc.relation.isreferencedby | INSPEC | |
dc.rights | Laisvai prieinamas internete | |
dc.source.uri | https://informatica.vu.lt/journal/INFORMATICA/article/1239/text | |
dc.source.uri | https://talpykla.elaba.lt/elaba-fedora/objects/elaba:114787766/datastreams/MAIN/content | |
dc.title | Development of a fuzzy inference based solar energy controller for smart marine water monitoring | |
dc.type | Straipsnis Web of Science DB / Article in Web of Science DB | |
dcterms.license | Creative Commons – Attribution – 4.0 International | |
dcterms.references | 63 | |
dc.type.pubtype | S1 - Straipsnis Web of Science DB / Web of Science DB article | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.institution | Vilniaus universitetas | |
dc.contributor.faculty | Fundamentinių mokslų fakultetas / Faculty of Fundamental Sciences | |
dc.subject.researchfield | N 009 - Informatika / Computer science | |
dc.subject.researchfield | T 007 - Informatikos inžinerija / Informatics engineering | |
dc.subject.studydirection | B01 - Informatika / Informatics | |
dc.subject.studydirection | F04 - Jūrų technologijos / Maritime technology | |
dc.subject.en | marine water monitoring | |
dc.subject.en | buoys | |
dc.subject.en | adaptive neural fuzzy inference system (ANFIS) | |
dc.subject.en | fuzzy controller | |
dc.subject.en | wireless sensor network (WSN) | |
dc.subject.en | Photovoltaic (PV) system | |
dc.subject.en | energy optimization | |
dcterms.sourcetitle | Informatica | |
dc.description.issue | iss. 4 | |
dc.description.volume | vol. 32 | |
dc.publisher.name | Vilniaus universiteto leidykla | |
dc.publisher.city | Vilnius | |
dc.identifier.doi | 000735200800006 | |
dc.identifier.doi | 10.15388/21-INFOR470 | |
dc.identifier.elaba | 114787766 | |