dc.contributor.author | Šumskas, Vytenis | |
dc.contributor.author | Čiegis, Raimondas | |
dc.date.accessioned | 2023-09-18T16:13:33Z | |
dc.date.available | 2023-09-18T16:13:33Z | |
dc.date.issued | 2022 | |
dc.identifier.issn | 0363-1672 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/112470 | |
dc.description.abstract | In this paper, we construct an alternating direction implicit (ADI) type finite volume numerical scheme to solve a nonclassical nonstationary heat conduction problem set in a 2D cross-shaped domain. We reduce the original model to a hybrid dimension model in a large part of the domain. We define special conjugation conditions between 2D and 1D parts. We apply the finite volume method to approximate spatial differential operators and use ADI splitting for time integration. The ADI scheme is unconditionally stable, and under a mix of Dirichlet and Neumann boundary conditions, the approximation error is of second order in space and time. The results of computational experiments confirm the theoretical error analysis. We compare visual representations and computational times for various sizes of reduced dimension zones | eng |
dc.format | PDF | |
dc.format.extent | p. 239-258 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Science Citation Index Expanded (Web of Science) | |
dc.relation.isreferencedby | Scopus | |
dc.relation.isreferencedby | SpringerLink | |
dc.source.uri | https://link.springer.com/content/pdf/10.1007/s10986-022-09561-0.pdf | |
dc.title | Finite volume ADI scheme for hybrid dimension heat conduction problems set in a cross-shaped domain | |
dc.type | Straipsnis Web of Science DB / Article in Web of Science DB | |
dcterms.references | 32 | |
dc.type.pubtype | S1 - Straipsnis Web of Science DB / Web of Science DB article | |
dc.contributor.institution | Vilniaus universitetas | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.faculty | Fundamentinių mokslų fakultetas / Faculty of Fundamental Sciences | |
dc.subject.researchfield | N 001 - Matematika / Mathematics | |
dc.subject.studydirection | A02 - Taikomoji matematika / Applied mathematics | |
dc.subject.vgtuprioritizedfields | FM0101 - Fizinių, technologinių ir ekonominių procesų matematiniai modeliai / Mathematical models of physical, technological and economic processes | |
dc.subject.ltspecializations | L106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies | |
dc.subject.en | ADI | |
dc.subject.en | FVM | |
dc.subject.en | hybrid dimension | |
dc.subject.en | heat conduction | |
dcterms.sourcetitle | Lithuanian mathematical journal | |
dc.description.issue | iss. 2 | |
dc.description.volume | vol. 62 | |
dc.publisher.name | Springer | |
dc.publisher.city | New York | |
dc.identifier.doi | 000776821400001 | |
dc.identifier.doi | 10.1007/s10986-022-09561-0 | |
dc.identifier.elaba | 125262316 | |