Show simple item record

dc.contributor.authorGudvangen, Emily
dc.contributor.authorKim, Vitalii
dc.contributor.authorNovickij, Vitalij
dc.contributor.authorBattista, Federico
dc.contributor.authorPakhomov, Andrei G.
dc.date.accessioned2023-09-18T16:16:54Z
dc.date.available2023-09-18T16:16:54Z
dc.date.issued2022
dc.identifier.other(SCOPUS_ID)85124058100
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/112669
dc.description.abstractAblation therapies aim at eradication of tumors with minimal impact on surrounding healthy tissues. Conventional pulsed electric field (PEF) treatments cause pain and muscle contractions far beyond the ablation area. The ongoing quest is to identify PEF parameters efficient at ablation but not at stimulation. We measured electroporation and cell killing thresholds for 150 ns-1 ms PEF, uni- and bipolar, delivered in 10- to 300-pulse trains at up to 1 MHz rates. Monolayers of murine colon carcinoma cells exposed to PEF were stained with YO-PRO-1 dye to detect electroporation. In 2-4 h, dead cells were labeled with propidium. Electroporation and cell death thresholds determined by matching the stained areas to the electric field intensity were compared to nerve excitation thresholds (Kim et al. in Int J Mol Sci 22(13):7051, 2021). The minimum fourfold ratio of cell killing and stimulation thresholds was achieved with bipolar nanosecond PEF (nsPEF), a sheer benefit over a 500-fold ratio for conventional 100-µs PEF. Increasing the bipolar nsPEF frequency up to 100 kHz within 10-pulse bursts increased ablation thresholds by < 20%. Restricting such bursts to the refractory period after nerve excitation will minimize the number of neuromuscular reactions while maintaining the ablation efficiency and avoiding heating.eng
dc.formatPDF
dc.format.extentp. 1-15
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.rightsLaisvai prieinamas internete
dc.source.urihttps://www.nature.com/articles/s41598-022-04868-x.pdf
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:119782943/datastreams/MAIN/content
dc.titleElectroporation and cell killing by milli- to nanosecond pulses and avoiding neuromuscular stimulation in cancer ablation
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.accessRightsThis article is licensed under a Creative Commons Attribution 4.0 International License,This article is licensed under a Creative Commons Attribution 4.0 International License.
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references70
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionOld Dominion University
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.institutionSapienza University of Rome
dc.contributor.facultyElektronikos fakultetas / Faculty of Electronics
dc.subject.researchfieldT 001 - Elektros ir elektronikos inžinerija / Electrical and electronic engineering
dc.subject.researchfieldN 010 - Biologija / Biology
dc.subject.researchfieldN 011 - Biofizika / Biophysics
dc.subject.vgtuprioritizedfieldsMC0505 - Inovatyvios elektroninės sistemos / Innovative Electronic Systems
dc.subject.ltspecializationsL105 - Sveikatos technologijos ir biotechnologijos / Health technologies and biotechnologies
dcterms.sourcetitleScientific reports
dc.description.issueiss. 1
dc.description.volumevol. 12
dc.publisher.nameNature
dc.publisher.cityBerlin
dc.identifier.doi2-s2.0-85124058100
dc.identifier.doi85124058100
dc.identifier.doi1
dc.identifier.doi134397435
dc.identifier.doi000750981100023
dc.identifier.doi10.1038/s41598-022-04868-x
dc.identifier.elaba119782943


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record