Rodyti trumpą aprašą

dc.contributor.authorShafaat, Atefeh
dc.contributor.authorŽalnėravičius, Rokas
dc.contributor.authorRatautas, Dalius
dc.contributor.authorDagys, Marius
dc.contributor.authorMeškys, Rolandas
dc.contributor.authorRutkienė, Rasa
dc.contributor.authorFrancisco Gonzalez-Martinez, Juan
dc.contributor.authorNeilands, Jessica
dc.contributor.authorBjörklund, Sebastian
dc.contributor.authorSotres, Javier
dc.contributor.authorRuzgas, Tautgirdas
dc.date.accessioned2023-09-18T16:17:16Z
dc.date.available2023-09-18T16:17:16Z
dc.date.issued2022
dc.identifier.issn2379-3694
dc.identifier.other(crossref_id)136217623
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/112790
dc.description.abstractTo maximize the potential of 5G infrastructure in healthcare, simple integration of biosensors with wireless tag antennas would be beneficial. This work introduces novel glucose-to-resistor transduction, which enables simple, wireless biosensor design. The biosensor was realized on a near-field communication tag antenna, where a sensing bioanode generated electrical current and electroreduced a nonconducting antenna material into an excellent conductor. For this, a part of the antenna was replaced by a Ag nanoparticle layer oxidized to high-resistance AgCl. The bioanode was based on Au nanoparticle-wired glucose dehydrogenase (GDH). The exposure of the cathode-bioanode to glucose solution resulted in GDH-catalyzed oxidation of glucose at the bioanode with a concomitant reduction of AgCl to highly conducting Ag on the cathode. The AgCl-to-Ag conversion strongly affected the impedance of the antenna circuit, allowing wireless detection of glucose. Mimicking the final application, the proposed wireless biosensor was ultimately evaluated through the measurement of glucose in whole blood, showing good agreement with the values obtained with a commercially available glucometer. This work, for the first time, demonstrates that making a part of the antenna from the AgCl layer allows achieving simple, chip-less, and battery-less wireless sensing of enzymecatalyzed reduction reaction.eng
dc.formatPDF
dc.format.extentp. 1222-1234
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyChemical abstracts
dc.rightsLaisvai prieinamas internete
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:126116179/datastreams/MAIN/content
dc.titleGlucose-to-resistor transduction integrated into a radio-frequency antenna for chip-less and battery-less wireless sensing
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references47
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionMalmo University
dc.contributor.institutionValstybinis mokslinių tyrimų institutas Fizinių ir technologijos mokslų centras
dc.contributor.institutionVilniaus universitetas Vilniaus Gedimino technikos universitetas
dc.contributor.institutionVilniaus universitetas
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.subject.researchfieldN 004 - Biochemija / Biochemistry
dc.subject.researchfieldN 003 - Chemija / Chemistry
dc.subject.enInternet of Things
dc.subject.enwireless detection of glucose
dc.subject.endirect electron transfer
dc.subject.englucose dehydrogenase
dc.subject.enchip-less wireless sensing
dcterms.sourcetitleACS sensors
dc.description.issueno. 4
dc.description.volumevol. 7
dc.publisher.nameAmerican Chemical Society
dc.publisher.cityWashington
dc.identifier.doi136217623
dc.identifier.doi000794994500032
dc.identifier.doi10.1021/acssensors.2c00394
dc.identifier.elaba126116179


Šio įrašo failai

Thumbnail

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą