Show simple item record

dc.contributor.authorMatuzevičius, Dalius
dc.date.accessioned2023-09-18T16:18:17Z
dc.date.available2023-09-18T16:18:17Z
dc.date.issued2022
dc.identifier.other(crossref_id)136804104
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/113007
dc.description.abstractTwo-dimensional electrophoresis gels (2DE, 2DEG) are the result of the procedure of separating, based on two molecular properties, a protein mixture on gel. Separated similar proteins concentrate in groups, and these groups appear as dark spots in the captured gel image. Gel images are analyzed to detect distinct spots and determine their peak intensity, background, integrated intensity, and other attributes of interest. One of the approaches to parameterizing the protein spots is spot modeling. Spot parameters of interest are obtained after the spot is approximated by a mathematical model. The development of the modeling algorithm requires a rich, diverse, representative dataset. The primary goal of this research is to develop a method for generating a synthetic protein spot dataset that can be used to develop 2DEG image analysis algorithms. The secondary objective is to evaluate the usefulness of the created dataset by developing a neural-network-based protein spot reconstruction algorithm that provides parameterization and denoising functionalities. In this research, a spot modeling algorithm based on autoencoders is developed using only the created synthetic dataset. The algorithm is evaluated on real and synthetic data. Evaluation results show that the created synthetic dataset is effective for the development of protein spot models. The developed algorithm outperformed all baseline algorithms in all experimental cases.eng
dc.formatPDF
dc.format.extentp. 1-22
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyDOAJ
dc.relation.isreferencedbyINSPEC
dc.relation.isreferencedbyJ-Gate
dc.rightsLaisvai prieinamas internete
dc.source.urihttps://www.mdpi.com/2076-3417/12/9/4393/htm
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:128059792/datastreams/MAIN/content
dc.titleSynthetic data generation for the development of 2D gel electrophoresis protein spot models
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.accessRightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references63
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyElektronikos fakultetas / Faculty of Electronics
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.researchfieldT 001 - Elektros ir elektronikos inžinerija / Electrical and electronic engineering
dc.subject.vgtuprioritizedfieldsIK0303 - Dirbtinio intelekto ir sprendimų priėmimo sistemos / Artificial intelligence and decision support systems
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.entwo-dimensional gel electrophoresis
dc.subject.en2DEG
dc.subject.engel image analysis
dc.subject.enbioinformatics
dc.subject.enprotein spot model
dc.subject.enspot detection
dc.subject.enquantification
dc.subject.ensynthetic data
dc.subject.enautoencoder
dcterms.sourcetitleApplied sciences: Special issue "Deep learning in bioinformatics and biomedicine"
dc.description.issueiss. 9
dc.description.volumevol. 12
dc.publisher.nameMDPI
dc.publisher.cityBasel
dc.identifier.doi136804104
dc.identifier.doi10.3390/app12094393
dc.identifier.elaba128059792


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record