Rodyti trumpą aprašą

dc.contributor.authorKonovalenko, Ihor
dc.contributor.authorMaruschak, Pavlo
dc.contributor.authorBrezinová, Janette
dc.contributor.authorPrentkovskis, Olegas
dc.contributor.authorBrezina, Jakub
dc.date.accessioned2023-09-18T16:18:21Z
dc.date.available2023-09-18T16:18:21Z
dc.date.issued2022
dc.identifier.other(crossref_id)136882738
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/113022
dc.description.abstractThe quality, wear and safety of metal structures can be controlled effectively, provided that surface defects, which occur on metal structures, are detected at the right time. Over the past 10 years, researchers have proposed a number of neural network architectures that have shown high efficiency in various areas, including image classification, segmentation and recognition. However, choosing the best architecture for this particular task is often problematic. In order to compare various techniques for detecting defects such as “scratch abrasion”, we created and investigated U-Net-like architectures with encoders such as ResNet, SEResNet, SEResNeXt, DenseNet, InceptionV3, Inception-ResNetV2, MobileNet and EfficientNet. The relationship between training validation metrics and final segmentation test metrics was investigated. The correlation between the loss function, the , , , and validation metrics and test metrics was calculated. Recognition accuracy was analyzed as affected by the optimizer during neural network training. In the context of this problem, neural networks trained using the stochastic gradient descent optimizer with Nesterov momentum were found to have the best generalizing properties. To select the best model during its training on the basis of the validation metrics, the main test metrics of recognition quality (Dice similarity coefficient) were analyzed depending on the validation metrics. The ResNet and DenseNet models were found to achieve the best generalizing properties for our task. The highest recognition accuracy was attained using the U-Net model with a ResNet152 backbone. The results obtained on the test dataset were and.eng
dc.formatPDF
dc.format.extentp. 1-20
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyDOAJ
dc.relation.isreferencedbyINSPEC
dc.relation.isreferencedbyJ-Gate
dc.source.urihttps://www.mdpi.com/2075-1702/10/5/327
dc.titleResearch of U-Net-based CNN architectures for metal surface defect detection
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.accessRightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references50
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionTernopil National Ivan Puluj Technical University
dc.contributor.institutionTechnical University of Košice
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyTransporto inžinerijos fakultetas / Faculty of Transport Engineering
dc.subject.researchfieldT 003 - Transporto inžinerija / Transport engineering
dc.subject.researchfieldT 008 - Medžiagų inžinerija / Material engineering
dc.subject.vgtuprioritizedfieldsTD0202 - Aplinką tausojantis transportas / Environment-friendly transport
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.ensurface defect detection
dc.subject.envisual inspection technology
dc.subject.enimage segmentation
dc.subject.enCNN optimizer
dc.subject.enstrip surface
dc.subject.enmetallurgy
dcterms.sourcetitleMachines
dc.description.issueiss. 5
dc.description.volumevol. 10
dc.publisher.nameMDPI
dc.publisher.cityBasel
dc.identifier.doi136882738
dc.identifier.doi000801789000001
dc.identifier.doi10.3390/machines10050327
dc.identifier.elaba128463641


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą