Show simple item record

dc.contributor.authorŠumanas, Marius
dc.contributor.authorPetronis, Algirdas
dc.contributor.authorBučinskas, Vytautas
dc.contributor.authorDzedzickis, Andrius
dc.contributor.authorViržonis, Darius
dc.contributor.authorMorkvėnaitė-Vilkončienė, Inga
dc.date.accessioned2023-09-18T16:18:32Z
dc.date.available2023-09-18T16:18:32Z
dc.date.issued2022
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/113051
dc.description.abstractRecent industrial robotics covers a broad part of the manufacturing spectrum and other human everyday life applications; the performance of these devices has become increasingly important. Positioning accuracy and repeatability, as well as operating speed, are essential in any industrial robotics application. Robot positioning errors are complex due to the extensive combination of their sources and cannot be compensated for using conventional methods. Some robot positioning errors can be compensated for only using machine learning (ML) procedures. Reinforced machine learning increases the robot’s positioning accuracy and expands its implementation capabilities. The provided methodology presents an easy and focused approach for industrial in situ robot position adjustment in real-time during production setup or readjustment cases. The scientific value of this approach is a methodology using an ML procedure without huge external datasets for the procedure and extensive computing facilities. This paper presents a deep q-learning algorithm applied to improve the positioning accuracy of an articulated KUKA youBot robot during operation. A significant improvement of the positioning accuracy was achieved approximately after 260 iterations in the online mode and initial simulation of the ML procedure.eng
dc.formatPDF
dc.format.extentp. 1-16
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyDOAJ
dc.relation.isreferencedbyINSPEC
dc.relation.isreferencedbyJ-Gate
dc.rightsLaisvai prieinamas internete
dc.source.urihttps://www.mdpi.com/1424-8220/22/10/3911/htm
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:131097131/datastreams/MAIN/content
dc.titleDeep Q-Learning in robotics: improvement of accuracy and repeatability
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.accessRightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references60
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyMechanikos fakultetas / Faculty of Mechanics
dc.subject.researchfieldT 009 - Mechanikos inžinerija / Mechanical enginering
dc.subject.studydirectionE06 - Mechanikos inžinerija / Mechanical engineering
dc.subject.vgtuprioritizedfieldsMC0101 - Mechatroninės gamybos sistemos Pramonė 4.0 platformoje / Mechatronic for Industry 4.0 Production System
dc.subject.ltspecializationsL104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies
dc.subject.enmachine learning
dc.subject.enpositioning errors
dc.subject.enrobotics
dc.subject.endeep q-learning
dc.subject.enreinforced learning
dc.subject.enrobot operating system ROS
dcterms.sourcetitleSensors: Special issue Robotic systems and automatic control: Mathematical models, technologies, applications and challenges
dc.description.issueiss. 10
dc.description.volumevol. 22
dc.publisher.nameMDPI
dc.publisher.cityBasel
dc.identifier.doi000803581100001
dc.identifier.doi10.3390/s22103911
dc.identifier.elaba131097131


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record