Show simple item record

dc.contributor.authorGric, Tatjana
dc.contributor.authorRafailov, Edik
dc.date.accessioned2023-09-18T16:21:15Z
dc.date.available2023-09-18T16:21:15Z
dc.date.issued2022
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/113410
dc.description.abstractTunable metamaterials belonging to the class of different reconfigurable optical devices have proved to be an excellent candidate for dynamic and efficient light control. However, due to the consistent optical response of metals, there are some limitations aiming to directly engineer electromagnetic resonances of widespread metal-based composites. The former is accomplished by altering the features or structures of substrates around the resonant unit cells only. In this regard, the adjusting of metallic composites has considerably weak performance. Herein, we make a step forward by providing deep insight into a direct tuning approach for semiconductor-based composites. The resonance behavior of their properties can be dramatically affected by manipulating the distribution of free carriers in unit cells under an applied voltage. The mentioned approach has been demonstrated in the case of semiconductor metamaterials by comparing the enhanced propagation of surface plasmon polaritons with a conventional semiconductor/air case. Theoretically, the presented approach provides a fertile ground to simplify the configuration of engineerable composites and provides a fertile ground for applications in ultrathin, linearly tunable, and on-chip integrated optical components. These include reconfigurable ultrathin lenses, nanoscale spatial light modulators, and optical cavities with switchable resonance modes.eng
dc.formatPDF
dc.format.extentp. 1-7
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyDOAJ
dc.relation.isreferencedbyINSPEC
dc.relation.isreferencedbyJ-Gate
dc.rightsLaisvai prieinamas internete
dc.source.urihttps://www.mdpi.com/2076-3417/12/12/6250/htm
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:134187471/datastreams/MAIN/content
dc.titleOn the study of advanced nanostructured semiconductor-based metamaterial
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.accessRightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references33
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus Gedimino technikos universitetas Valstybinis mokslinių tyrimų institutas Fizinių ir technologijos mokslų centras Aston University
dc.contributor.institutionAston University
dc.contributor.facultyElektronikos fakultetas / Faculty of Electronics
dc.subject.researchfieldT 001 - Elektros ir elektronikos inžinerija / Electrical and electronic engineering
dc.subject.researchfieldN 002 - Fizika / Physics
dc.subject.studydirectionC02 - Fizika / Physics
dc.subject.vgtuprioritizedfieldsFM0101 - Fizinių, technologinių ir ekonominių procesų matematiniai modeliai / Mathematical models of physical, technological and economic processes
dc.subject.ltspecializationsL104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies
dc.subject.enmetamaterial
dc.subject.ennanostructure
dc.subject.ensemiconductor
dcterms.sourcetitleApplied sciences: Special issue: Metamaterials meeting industry
dc.description.issueiss. 12
dc.description.volumevol. 12
dc.publisher.nameMDPI
dc.publisher.cityBasel
dc.identifier.doi000816295600001
dc.identifier.doi10.3390/app12126250
dc.identifier.elaba134187471


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record