dc.contributor.author | Singh, Shubham Udairaj | |
dc.contributor.author | Banelienė, Rūta | |
dc.date.accessioned | 2023-09-18T16:25:56Z | |
dc.date.available | 2023-09-18T16:25:56Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/113876 | |
dc.description.abstract | Living under rapidly changing conditions innovation, flexibility and readiness to change are grounding prosperity of the firm. But any changes for companies should be reasoned and made on the basis of analytical approach. Big data usually could help in this situation without spending time and money on expensive research activities. Therefore, this paper is focused on big data application on customers behavior switching from one product to new its look. Modeling is based on few months daily data with regression analysis application and the least squares method. The major finding comes up with the estimation output that new webpage more popular among IOS and WEB users, although Android systems showing negative impact on switching to new website. | eng |
dc.format.extent | p. 26 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.rights | Laisvai prieinamas internete | |
dc.source.uri | https://www.knf.vu.lt/gronskas-conference-2022#program | |
dc.source.uri | https://talpykla.elaba.lt/elaba-fedora/objects/elaba:149965539/datastreams/MAIN/content | |
dc.source.uri | https://talpykla.elaba.lt/elaba-fedora/objects/elaba:149965539/datastreams/ATTACHMENT_149967060/content | |
dc.title | Big data application for traffic estimation on a website: Big daddy case | |
dc.type | Kitos konferencijų pranešimų santraukos / Other conference presentation abstracts | |
dcterms.references | 0 | |
dc.type.pubtype | T3 - Kitos konferencijos pranešimo tezės / Other conference presentation abstracts | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.faculty | Mechanikos fakultetas / Faculty of Mechanics | |
dc.subject.researchfield | T 007 - Informatikos inžinerija / Informatics engineering | |
dc.subject.researchfield | S 003 - Vadyba / Management | |
dc.subject.studydirection | B02 - Informacijos sistemos / Information system | |
dc.subject.studydirection | E10 - Gamybos inžinerija / Production and manufacturing engineering | |
dc.subject.vgtuprioritizedfields | EV02 - Aukštos pridėtinės vertės ekonomika / High Value-Added Economy | |
dc.subject.ltspecializations | L106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies | |
dc.subject.en | big data | |
dc.subject.en | customers behavior | |
dc.subject.en | new product | |
dcterms.sourcetitle | Program of 17th Prof. Vladas Gronskas International Scientific Conference, 2 December 2022 : virtual konference | |
dc.publisher.name | Vilnius University | |
dc.publisher.city | Vilnius | |
dc.identifier.elaba | 149965539 | |