Show simple item record

dc.contributor.authorSingh, Shubham Udairaj
dc.contributor.authorBanelienė, Rūta
dc.date.accessioned2023-09-18T16:25:56Z
dc.date.available2023-09-18T16:25:56Z
dc.date.issued2022
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/113876
dc.description.abstractLiving under rapidly changing conditions innovation, flexibility and readiness to change are grounding prosperity of the firm. But any changes for companies should be reasoned and made on the basis of analytical approach. Big data usually could help in this situation without spending time and money on expensive research activities. Therefore, this paper is focused on big data application on customers behavior switching from one product to new its look. Modeling is based on few months daily data with regression analysis application and the least squares method. The major finding comes up with the estimation output that new webpage more popular among IOS and WEB users, although Android systems showing negative impact on switching to new website.eng
dc.format.extentp. 26
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.rightsLaisvai prieinamas internete
dc.source.urihttps://www.knf.vu.lt/gronskas-conference-2022#program
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:149965539/datastreams/MAIN/content
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:149965539/datastreams/ATTACHMENT_149967060/content
dc.titleBig data application for traffic estimation on a website: Big daddy case
dc.typeKitos konferencijų pranešimų santraukos / Other conference presentation abstracts
dcterms.references0
dc.type.pubtypeT3 - Kitos konferencijos pranešimo tezės / Other conference presentation abstracts
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyMechanikos fakultetas / Faculty of Mechanics
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.researchfieldS 003 - Vadyba / Management
dc.subject.studydirectionB02 - Informacijos sistemos / Information system
dc.subject.studydirectionE10 - Gamybos inžinerija / Production and manufacturing engineering
dc.subject.vgtuprioritizedfieldsEV02 - Aukštos pridėtinės vertės ekonomika / High Value-Added Economy
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.enbig data
dc.subject.encustomers behavior
dc.subject.ennew product
dcterms.sourcetitleProgram of 17th Prof. Vladas Gronskas International Scientific Conference, 2 December 2022 : virtual konference
dc.publisher.nameVilnius University
dc.publisher.cityVilnius
dc.identifier.elaba149965539


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record