Rodyti trumpą aprašą

dc.contributor.authorMaass, Bolko
dc.contributor.authorWoicke, Svenja
dc.contributor.authorOliveira, Willem M.
dc.contributor.authorRazgus, Bronislovas
dc.contributor.authorKrueger, Hans
dc.date.accessioned2023-09-18T16:26:45Z
dc.date.available2023-09-18T16:26:45Z
dc.date.issued2020
dc.identifier.issn0731-5090
dc.identifier.other(WOS_ID)000551957800002
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/114035
dc.description.abstractInterest in autonomous planetary precision landing missions has been increasing in the scientific and engineering community, and is likely to continue to do so for the foreseeable future. As an enabling technology in the context of lunar landing, DLR, German Aerospace Center has been developing a terrain absolute navigation system that matches craters detected in image data to globally available lunar crater maps. The proposed Crater Navigation (CNav) system is adaptive, comprising three different crater matching methods that are specifically tailored to different navigation conditions encountered during the vehicle descent, so that it may be used as a stand-alone navigation sensor that can be closely integrated with a lander guidance, navigation, and control system to enable reliable absolute navigation throughout the entire descent phase of a mission. As robustness is a vital aspect to mission success, the CNav system includes verification mechanisms that ensure high dependability of the resulting navigation solution. This robustness is verified separately for all of the three different matching techniques presented in this paper. Closed-loop performance of the matchers is demonstrated as well, both for simulated image data sets, as for navigation camera images acquired during the Chinese Chang’e-3 landing mission. Successful uninterrupted estimation of the entire Chang’e-3 kinematic vehicle state during the powered descent until a final altitude of 350 m above ground, with neither known camera calibration nor inertial measurement unit data available, showcases the potential of the CNav system.eng
dc.formatPDF
dc.format.extentp. 1414-1431
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.source.urihttps://arc.aiaa.org/doi/pdf/10.2514/1.G004850
dc.titleCrater navigation system for autonomous precision landing on the moon
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.references23
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionGerman Aerospace Center (DLR)
dc.subject.researchfieldT 001 - Elektros ir elektronikos inžinerija / Electrical and electronic engineering
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.vgtuprioritizedfieldsIK0404 - Geoinformacinės technologijos / Geoinformation technologies
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dcterms.sourcetitleJournal of guidance control and dynamics
dc.description.issueiss. 8
dc.description.volumevol. 43
dc.publisher.nameAmerican Institute of Aeronautics and Astronautics
dc.publisher.cityReston
dc.identifier.doi115746762
dc.identifier.doi2-s2.0-85088225678
dc.identifier.doi85088225678
dc.identifier.doi0
dc.identifier.doi000551957800002
dc.identifier.doi10.2514/1.G004850
dc.identifier.elaba146412339


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą