Show simple item record

dc.contributor.authorMaskeliūnas, Rytis
dc.contributor.authorDamaševičius, Robertas
dc.contributor.authorBlažauskas, Tomas
dc.contributor.authorCanbulut, Cenker
dc.contributor.authorAdomavičienė, Aušra
dc.contributor.authorGriškevičius, Julius
dc.date.accessioned2023-09-18T16:28:25Z
dc.date.available2023-09-18T16:28:25Z
dc.date.issued2023
dc.identifier.issn2079-9292
dc.identifier.other(crossref_id)144022506
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/114283
dc.description.abstractRemote patient monitoring is one of the most reliable choices for the availability of health care services for the elderly and/or chronically ill. Rehabilitation requires the exact and medically correct completion of physiotherapy activities. This paper presents BiomacVR, a virtual reality (VR)-based rehabilitation system that combines a VR physical training monitoring environment with upper limb rehabilitation technology for accurate interaction and increasing patients’ engagement in rehabilitation training. The system utilises a deep learning motion identification model called Convolutional Pose Machine (CPM) that uses a stacked hourglass network. The model is trained to precisely locate critical places in the human body using image sequences collected by depth sensors to identify correct and wrong human motions and to assess the effectiveness of physical training based on the scenarios presented. This paper presents the findings of the eight most-frequently used physical training exercise situations from post-stroke rehabilitation methodology. Depth sensors were able to accurately identify key parameters of the posture of a person performing different rehabilitation exercises. The average response time was 23 ms, which allows the system to be used in real-time applications. Furthermore, the skeleton features obtained by the system are useful for discriminating between healthy (normal) subjects and subjects suffering from lower back pain. Our results confirm that the proposed system with motion recognition methodology can be used to evaluate the quality of the physiotherapy exercises of the patient and monitor the progress of rehabilitation and assess its effectiveness.eng
dc.formatPDF
dc.format.extentp. 1-31
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyINSPEC
dc.relation.isreferencedbyDOAJ
dc.rightsLaisvai prieinamas internete
dc.source.urihttps://www.mdpi.com/2079-9292/12/2/339
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:152417087/datastreams/MAIN/content
dc.titleBiomacVR: a virtual reality-based system for precise human posture and motion analysis in rehabilitation exercises using depth sensors
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references77
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionKauno technologijos universitetas
dc.contributor.institutionVilniaus universitetas
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyMechanikos fakultetas / Faculty of Mechanics
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.researchfieldT 009 - Mechanikos inžinerija / Mechanical enginering
dc.subject.researchfieldM 001 - Medicina / Medicine
dc.subject.studydirectionE02 - Bioinžinerija / Bioengineering
dc.subject.vgtuprioritizedfieldsMC0404 - Bionika ir biomedicinos inžinerinės sistemos / Bionics and Biomedical Engineering Systems
dc.subject.ltspecializationsL105 - Sveikatos technologijos ir biotechnologijos / Health technologies and biotechnologies
dc.subject.enposture analysis
dc.subject.enpose recognition
dc.subject.enmotion analysis
dc.subject.enaction recognition
dc.subject.endepth sensors
dc.subject.enrehabilitation exercises
dc.subject.envirtual reality
dc.subject.entelehealth
dcterms.sourcetitleElectronics
dc.description.issueiss. 2
dc.description.volumevol. 12
dc.publisher.nameMDPI
dc.publisher.cityBasel
dc.identifier.doi144022506
dc.identifier.doi1
dc.identifier.doi2-s2.0-85146823987
dc.identifier.doi000916970300001
dc.identifier.doi10.3390/electronics12020339
dc.identifier.elaba152417087


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record