dc.contributor.author | Ardatov, Oleg | |
dc.contributor.author | Aleksiuk, Viktorija | |
dc.contributor.author | Maknickas, Algirdas | |
dc.contributor.author | Stonkus, Rimantas | |
dc.contributor.author | Uzielienė, Ilona | |
dc.contributor.author | Vaičiuleviciūtė, Raminta | |
dc.contributor.author | Pachaleva, Jolita | |
dc.contributor.author | Kvederas, Giedrius | |
dc.contributor.author | Bernotienė, Eiva | |
dc.date.accessioned | 2023-09-18T16:36:04Z | |
dc.date.available | 2023-09-18T16:36:04Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/115330 | |
dc.description.abstract | The present study aims to explore the stressed state of cartilage using various meniscal tear models. To perform this research, the anatomical model of the knee joint was developed and the nonlinear mechanical properties of the cartilage and meniscus were verified. The stress–strain curve of the meniscus was obtained by testing fresh tissue specimens of the human meniscus using a compression machine. The results showed that the more deteriorated meniscus had greater stiffness, but its integrity had the greatest impact on the growth of cartilage stresses. To confirm this, cases of radial, longitudinal, and complex tears were examined. The methodology and results of the study can assist in medical diagnostics for meniscus treatment and replacement. | eng |
dc.format | PDF | |
dc.format.extent | p. 1-13 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Science Citation Index Expanded (Web of Science) | |
dc.relation.isreferencedby | Scopus | |
dc.relation.isreferencedby | INSPEC | |
dc.relation.isreferencedby | DOAJ | |
dc.relation.isreferencedby | PubMed | |
dc.rights | Laisvai prieinamas internete | |
dc.source.uri | https://www.mdpi.com/2306-5354/10/3/314# | |
dc.source.uri | https://talpykla.elaba.lt/elaba-fedora/objects/elaba:157327597/datastreams/MAIN/content | |
dc.title | Modeling the impact of meniscal tears on von mises stress of knee cartilage tissue | |
dc.type | Straipsnis Web of Science DB / Article in Web of Science DB | |
dcterms.accessRights | This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/) | |
dcterms.license | Creative Commons – Attribution – 4.0 International | |
dcterms.references | 32 | |
dc.type.pubtype | S1 - Straipsnis Web of Science DB / Web of Science DB article | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.institution | Valstybinis mokslinių tyrimų institutas Inovatyvios medicinos centras | |
dc.contributor.institution | Vilniaus universitetas | |
dc.contributor.institution | Valstybinis mokslinių tyrimų institutas Inovatyvios medicinos centras Vilniaus Gedimino technikos universitetas | |
dc.contributor.faculty | Mechanikos fakultetas / Faculty of Mechanics | |
dc.subject.researchfield | T 009 - Mechanikos inžinerija / Mechanical enginering | |
dc.subject.researchfield | M 001 - Medicina / Medicine | |
dc.subject.vgtuprioritizedfields | MC0404 - Bionika ir biomedicinos inžinerinės sistemos / Bionics and Biomedical Engineering Systems | |
dc.subject.ltspecializations | L105 - Sveikatos technologijos ir biotechnologijos / Health technologies and biotechnologies | |
dc.subject.en | cartilage | |
dc.subject.en | femur | |
dc.subject.en | finite element method | |
dc.subject.en | hyperelasticity | |
dc.subject.en | meniscus | |
dc.subject.en | tibia | |
dcterms.sourcetitle | Bioengineering: Special issue: Computational biomechanics | |
dc.description.issue | iss. 3 | |
dc.description.volume | vol. 10 | |
dc.publisher.name | MDPI | |
dc.publisher.city | Basel | |
dc.identifier.doi | 000957964600001 | |
dc.identifier.doi | 10.3390/bioengineering10030314 | |
dc.identifier.elaba | 157327597 | |