Rodyti trumpą aprašą

dc.contributor.authorKvietkauskas, Tautvydas
dc.contributor.authorStefanovič, Pavel
dc.date.accessioned2023-09-18T16:36:50Z
dc.date.available2023-09-18T16:36:50Z
dc.date.issued2023
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/115431
dc.description.abstractObject detection is one of the most popular areas today. The new models of object detection are created continuously and applied in various fields that help to modernize the old solutions in practice. In this manuscript, the focus has been on investigating the influence of training parameters on similar object detection: image resolution, batch size, iteration number, and color of images. The results of the model have been applied in real-time object detection using mobile devices. The new construction detail dataset has been collected and used in experimental investigation. The models have been evaluated by two measures: the accuracy of each prepared model has been measured; results of real-time object detection on testing data, where the recognition ratio has been calculated. The highest influence on the accuracy of the created models has the iteration number chosen in the training process and the resolution of the images. The higher the resolution of the images that have been selected, the lower the accuracy that has been obtained. The small iteration number leads to the model not being well trained and the accuracy of the models being very low. Slightly better results were obtained when the color images were used.eng
dc.formatPDF
dc.format.extentp. 1-15
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyDOAJ
dc.relation.isreferencedbyINSPEC
dc.source.urihttps://www.mdpi.com/2076-3417/13/6/3761
dc.titleInfluence of training parameters on real-time similar object detection using YOLOv5s
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.accessRightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references30
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.researchfieldN 009 - Informatika / Computer science
dc.subject.vgtuprioritizedfieldsIK0303 - Dirbtinio intelekto ir sprendimų priėmimo sistemos / Artificial intelligence and decision support systems
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.enYOLOv5s
dc.subject.enreal-time object detection
dc.subject.enconstruction details dataset
dc.subject.ensimilar objects
dcterms.sourcetitleApplied sciences: Special issue: Deep learning in object detection and tracking
dc.description.issueiss. 6
dc.description.volumevol. 13
dc.publisher.nameMDPI
dc.publisher.cityBasel
dc.identifier.doi000954202700001
dc.identifier.doi10.3390/app13063761
dc.identifier.elaba158861949


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą