Show simple item record

dc.contributor.authorAl-Refaie, Abbas
dc.contributor.authorAbu Hamdieh, Banan
dc.contributor.authorLepkova, Natalija
dc.date.accessioned2023-09-18T16:36:52Z
dc.date.available2023-09-18T16:36:52Z
dc.date.issued2023
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/115435
dc.description.abstractThis study proposed a data mining framework for predicting sequential patterns of maintenance activities. The framework consisted of data collection, prediction of maintenance activities with and without attributes, and then the comparison between prediction results. In data collection, historical data were collected regarding maintenance activities and product attributes. The generalized sequential pattern (GSP) and association rules were then applied to predict maintenance activities with and without attributes to determine the frequent sequential patterns and significant rules of maintenance activities. Finally, a comparison was performed between the sequences of maintenance activities with and without attributes. A real case study of washing machine products was presented to illustrate the developed framework. The results showed that the proposed framework effectively predicted the next maintenance activities and planning preventive maintenance based on product attributes. In conclusion, the data mining approach is found effective in determining the maintenance sequence that reduces downtime and thereby enhancing productivity and availability.eng
dc.formatPDF
dc.format.extentp. 1-19
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyDOAJ
dc.relation.isreferencedbyINSPEC
dc.rightsLaisvai prieinamas internete
dc.source.urihttps://www.mdpi.com/2075-5309/13/4/946
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:160890360/datastreams/MAIN/content
dc.titlePrediction of maintenance activities using generalized sequential pattern and association rules in data mining
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.accessRightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references35
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionThe University of Jordan
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyStatybos fakultetas / Faculty of Civil Engineering
dc.subject.researchfieldT 002 - Statybos inžinerija / Construction and engineering
dc.subject.studydirectionE05 - Statybos inžinerija / Civil engineering
dc.subject.vgtuprioritizedfieldsSD0404 - Statinių skaitmeninis modeliavimas ir tvarus gyvavimo ciklas / BIM and Sustainable lifecycle of the structures
dc.subject.ltspecializationsL104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies
dc.subject.enprediction of maintenance
dc.subject.endata mining
dc.subject.engeneralized sequential pattern
dc.subject.enassociation rule mining
dc.subject.enmaintenance planning
dcterms.sourcetitleBuildings: Special issue: "Computational approach applications in housing and real estate"
dc.description.issueiss. 4
dc.description.volumevol. 13
dc.publisher.nameMDPI
dc.publisher.cityBasel
dc.identifier.doi000977688400001
dc.identifier.doi10.3390/buildings13040946
dc.identifier.elaba160890360


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record