dc.contributor.author | Čiegis, Raimondas | |
dc.contributor.author | Starikovičius, Vadimas | |
dc.contributor.author | Suboč, Olga | |
dc.contributor.author | Čiegis, Remigijus | |
dc.date.accessioned | 2023-09-18T16:39:39Z | |
dc.date.available | 2023-09-18T16:39:39Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/115587 | |
dc.description.abstract | The main aim of this article is to propose an adaptive method to solve multidimensional parabolic problems with fractional power elliptic operators. The adaptivity technique is based on a very efficient method when the multidimensional problem is approximated by a partially dimension-reduced mathematical model. Then in the greater part of the domain, only one-dimensional problems are solved. For the first time such a technique is applied for problems with nonlocal diffusion operators. It is well known that, even for classical local diffusion operators, the averaged flux conjugation conditions become nonlocal. Efficient finite volume type discrete schemes are constructed and analysed. The stability and accuracy of obtained local discrete schemes is investigated. The results of computational experiments are presented and compared with theoretical results. | eng |
dc.format | PDF | |
dc.format.extent | p. 1-18 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Science Citation Index Expanded (Web of Science) | |
dc.relation.isreferencedby | Scopus | |
dc.relation.isreferencedby | DOAJ | |
dc.relation.isreferencedby | RePec | |
dc.source.uri | https://www.mdpi.com/2227-7390/11/9/1984 | |
dc.title | On construction of partially dimension-reduced approximations for nonstationary nonlocal problems of a parabolic type | |
dc.type | Straipsnis Web of Science DB / Article in Web of Science DB | |
dcterms.accessRights | This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/) | |
dcterms.license | Creative Commons – Attribution – 4.0 International | |
dcterms.references | 23 | |
dc.type.pubtype | S1 - Straipsnis Web of Science DB / Web of Science DB article | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.institution | Vilniaus universitetas | |
dc.contributor.faculty | Fundamentinių mokslų fakultetas / Faculty of Fundamental Sciences | |
dc.subject.researchfield | N 001 - Matematika / Mathematics | |
dc.subject.studydirection | A01 - Matematika / Mathematics | |
dc.subject.studydirection | A02 - Taikomoji matematika / Applied mathematics | |
dc.subject.vgtuprioritizedfields | FM0101 - Fizinių, technologinių ir ekonominių procesų matematiniai modeliai / Mathematical models of physical, technological and economic processes | |
dc.subject.ltspecializations | L106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies | |
dc.subject.en | fractional power elliptic operators | |
dc.subject.en | partially dimension-reduced models | |
dc.subject.en | parabolic problems | |
dc.subject.en | stability | |
dc.subject.en | convergence analysis | |
dcterms.sourcetitle | Mathematics: Special issue: "Nonlinear partial differential equations: exact solutions, symmetries, methods, and applications II" | |
dc.description.issue | iss. 9 | |
dc.description.volume | vol. 11 | |
dc.publisher.name | MDPI | |
dc.publisher.city | Basel | |
dc.identifier.doi | 000987762900001 | |
dc.identifier.doi | 10.3390/math11091984 | |
dc.identifier.elaba | 164161563 | |