Rodyti trumpą aprašą

dc.contributor.authorGric, Tatjana
dc.date.accessioned2023-09-18T16:39:54Z
dc.date.available2023-09-18T16:39:54Z
dc.date.issued2023
dc.identifier.issn0306-8919
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/115672
dc.description.abstractLately, the negative absorption in plasma-dielectric nanostructures provided a fertile ground for the advancement of THz electronic appliances. Herein we present a plasma-dielectric nanostructure aiming to achieve enhanced negative absorption in the high frequency region resulting because of strong plasma-light interaction. The paper presents dispersion maps of surface plasmon polaritons propagating at the boundary of the nanostructured metamaterial. The plasma-dielectric nanostructure leads to the dispersion equation and resonance mode. It is worthwhile mentioning that the former can couple with the incident wave to create an enhanced resonance. Doing so, the dispersion of the surface waves along with the resonance are involved in the plasma-light interaction and increase the negative absorption. Doing so, the resonance coupling defnes the distribution of negative absorption, and the maximum is dominated by dispersion. Moreover, the dispersion relation describing propagation of surface waves at the interface of highly anisotropic metamaterial has been applied to the inhomogeneous metamaterial case. Also, based on the behaviour of the efective properties of the metamaterial it has been concluded that the structure under investigation belongs to the class of the hyperbolic metamaterials.eng
dc.formatPDF
dc.format.extentp. 1-10
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyINSPEC
dc.relation.isreferencedbyDimensions
dc.rightsNeprieinamas
dc.source.urihttps://link.springer.com/article/10.1007/s11082-023-04898-3
dc.titleInhomogeneous inclusions enhanced negative absorption in the plasma‑dielectric nanostructure
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.references31
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus Gedimino technikos universitetas Valstybinis mokslinių tyrimų institutas Fizinių ir technologijos mokslų centras
dc.contributor.facultyElektronikos fakultetas / Faculty of Electronics
dc.subject.researchfieldT 001 - Elektros ir elektronikos inžinerija / Electrical and electronic engineering
dc.subject.researchfieldN 002 - Fizika / Physics
dc.subject.studydirectionC02 - Fizika / Physics
dc.subject.vgtuprioritizedfieldsFM0101 - Fizinių, technologinių ir ekonominių procesų matematiniai modeliai / Mathematical models of physical, technological and economic processes
dc.subject.ltspecializationsL104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies
dc.subject.enabsorption
dc.subject.ennanostructure
dc.subject.enplasma
dcterms.sourcetitleOptical and quantum electronics
dc.description.issueiss. 7
dc.description.volumevol. 55
dc.publisher.nameSpringer
dc.publisher.cityDordrecht
dc.identifier.doi000988795800013
dc.identifier.doi10.1007/s11082-023-04898-3
dc.identifier.elaba165530696


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą