Rodyti trumpą aprašą

dc.contributor.authorBystrov, Oleg
dc.contributor.authorPacevič, Ruslan
dc.contributor.authorKačeniauskas, Arnas
dc.date.accessioned2023-09-18T16:39:56Z
dc.date.available2023-09-18T16:39:56Z
dc.date.issued2023
dc.identifier.other(crossref_id)147163967
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/115683
dc.description.abstractCloud computing has received increasing attention due to its promise of delivering on-demand, scalable, and virtually unlimited resources. However, heterogeneity or co-location of virtual cloud resources can cause severe degradation of the efficiency of parallel computations because of a priori unknown application-specific performance metrics, load imbalance, and limitations of memory bandwidth. This paper presents the runtime adaptation of parallel discrete element method (DEM) Software as a Service (SaaS) to heterogeneous or co-located resources of the OpenStack cloud. The computational workload is adapted by using weighted repartitioning and runtime measured performance of parallel computations on Docker containers. The high improvement in performance up to 48.7% of the execution time is achieved, applying the runtime adapted repartitioning when the load imbalance is high enough. The low load imbalance leads to the close values of computational load, when small variations in the system load and performance can cause oscillations in subsets of particles. Memory stress tests cause heterogeneity of non-isolated containers, which reduces the performance of memory bandwidth bound DEM SaaS on the co-located resources. The runtime adapted repartitioning handles the constant and periodically variable performance of non-isolated containers and decreases the total execution time of DEM SaaS.eng
dc.formatPDF
dc.format.extentp. 1-17
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.source.urihttps://www.mdpi.com/2076-3417/13/8/5115
dc.titleAdaptation of parallel SaaS to heterogeneous co-located cloud resources
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.accessRightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references56
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.contributor.departmentTaikomosios informatikos institutas / Institute of Applied Computer Science
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.studydirectionB04 - Informatikos inžinerija / Informatics engineering
dc.subject.vgtuprioritizedfieldsIK0101 - Informacijos ir informacinių technologijų sauga / Information and Information Technologies Security
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.enheterogeneous co-located cloud resources
dc.subject.enweighted partitioning
dc.subject.enruntime measured performance
dc.subject.enDocker containers
dc.subject.endiscrete element method
dc.subject.enmemory bandwidth bound applications
dcterms.sourcetitleApplied sciences
dc.description.issueiss. 8
dc.description.volumevol. 13
dc.publisher.nameMDPI
dc.publisher.cityBasel
dc.identifier.doi147163967
dc.identifier.doi000977439500001
dc.identifier.doi2-s2.0-85156151177
dc.identifier.doi85156151177
dc.identifier.doi1
dc.identifier.doi10.3390/app13085115
dc.identifier.elaba165612561


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą