dc.contributor.author | Bystrov, Oleg | |
dc.contributor.author | Pacevič, Ruslan | |
dc.contributor.author | Kačeniauskas, Arnas | |
dc.date.accessioned | 2023-09-18T16:39:56Z | |
dc.date.available | 2023-09-18T16:39:56Z | |
dc.date.issued | 2023 | |
dc.identifier.other | (crossref_id)147163967 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/115683 | |
dc.description.abstract | Cloud computing has received increasing attention due to its promise of delivering on-demand, scalable, and virtually unlimited resources. However, heterogeneity or co-location of virtual cloud resources can cause severe degradation of the efficiency of parallel computations because of a priori unknown application-specific performance metrics, load imbalance, and limitations of memory bandwidth. This paper presents the runtime adaptation of parallel discrete element method (DEM) Software as a Service (SaaS) to heterogeneous or co-located resources of the OpenStack cloud. The computational workload is adapted by using weighted repartitioning and runtime measured performance of parallel computations on Docker containers. The high improvement in performance up to 48.7% of the execution time is achieved, applying the runtime adapted repartitioning when the load imbalance is high enough. The low load imbalance leads to the close values of computational load, when small variations in the system load and performance can cause oscillations in subsets of particles. Memory stress tests cause heterogeneity of non-isolated containers, which reduces the performance of memory bandwidth bound DEM SaaS on the co-located resources. The runtime adapted repartitioning handles the constant and periodically variable performance of non-isolated containers and decreases the total execution time of DEM SaaS. | eng |
dc.format | PDF | |
dc.format.extent | p. 1-17 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Science Citation Index Expanded (Web of Science) | |
dc.relation.isreferencedby | Scopus | |
dc.source.uri | https://www.mdpi.com/2076-3417/13/8/5115 | |
dc.title | Adaptation of parallel SaaS to heterogeneous co-located cloud resources | |
dc.type | Straipsnis Web of Science DB / Article in Web of Science DB | |
dcterms.accessRights | This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). | |
dcterms.license | Creative Commons – Attribution – 4.0 International | |
dcterms.references | 56 | |
dc.type.pubtype | S1 - Straipsnis Web of Science DB / Web of Science DB article | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.faculty | Fundamentinių mokslų fakultetas / Faculty of Fundamental Sciences | |
dc.contributor.department | Taikomosios informatikos institutas / Institute of Applied Computer Science | |
dc.subject.researchfield | T 007 - Informatikos inžinerija / Informatics engineering | |
dc.subject.studydirection | B04 - Informatikos inžinerija / Informatics engineering | |
dc.subject.vgtuprioritizedfields | IK0101 - Informacijos ir informacinių technologijų sauga / Information and Information Technologies Security | |
dc.subject.ltspecializations | L106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies | |
dc.subject.en | heterogeneous co-located cloud resources | |
dc.subject.en | weighted partitioning | |
dc.subject.en | runtime measured performance | |
dc.subject.en | Docker containers | |
dc.subject.en | discrete element method | |
dc.subject.en | memory bandwidth bound applications | |
dcterms.sourcetitle | Applied sciences | |
dc.description.issue | iss. 8 | |
dc.description.volume | vol. 13 | |
dc.publisher.name | MDPI | |
dc.publisher.city | Basel | |
dc.identifier.doi | 147163967 | |
dc.identifier.doi | 000977439500001 | |
dc.identifier.doi | 2-s2.0-85156151177 | |
dc.identifier.doi | 85156151177 | |
dc.identifier.doi | 1 | |
dc.identifier.doi | 10.3390/app13085115 | |
dc.identifier.elaba | 165612561 | |