dc.contributor.author | Škulteckė, Judita | |
dc.contributor.author | Vaitkus, Audrius | |
dc.contributor.author | Andrejevas, Vitalijus | |
dc.contributor.author | Gribulis, Gediminas | |
dc.date.accessioned | 2023-09-18T16:43:42Z | |
dc.date.available | 2023-09-18T16:43:42Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 1822-427X | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/116381 | |
dc.description.abstract | In cold regions and areas where there is a huge difference between high and low temperatures asphalt pavements are subject to low temperature cracking. The appeared cracks form pavement discontinuities, through which water penetrates into pavement structure. It reduces the bearing capacity of the whole pavement structure, weakens adhesion between bitumen and aggregate, affects bonding between layers and increases the development of frost heaves. A sealing of cracks deals with these issues. However, additional inspections after each winter have to be carried out to identify both cracks that have newly appeared and cracks that need to be resealed. These activities significantly increase road maintenance cost. Selection of the appropriate asphalt mixture by its performance at low temperatures reduces or even prevents low temperature cracking of asphalt pavements. A number of methods such as the Indirect Tensile Test, the Bending Beam Rheometer Test, the Thermal Stress Restrained Specimen Test, Asphalt Thermal Cracking Analyser, the Single-Edge-Notched Beam Test, the Disc-Shaped Compact Tension Test, the Semi-Circular Bend Test, the Fenix Test, Asphalt Concrete Cracking Device and Spectral Analysis of Acoustic Emission are developed to evaluate asphalt mixture resistance to low temperature cracking. This paper presents an analysis of these tests, emphasizes their advantages and disadvantages and gives limiting criteria to evaluate asphalt mixture resistance to low temperature cracking. The test advantages and disadvantages are deciding factors in a test selection. Some tests such as the Thermal Stress Restrained Specimen Test and Spectral Analysis of acoustic emission can directly reveal the lowest temperature at which asphalt mixture can withstand induced thermal stresses. | eng |
dc.format | PDF | |
dc.format.extent | p. 135-144 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Index Copernicus | |
dc.relation.isreferencedby | Central & Eastern European Academic Source (CEEAS) | |
dc.relation.isreferencedby | Computers & Applied Sciences Complete | |
dc.relation.isreferencedby | Science Citation Index Expanded (Web of Science) | |
dc.relation.isreferencedby | Scopus | |
dc.relation.isreferencedby | INSPEC | |
dc.source.uri | https://doi.org/10.3846/bjrbe.2017.16 | |
dc.subject | SD04 - Tvarus statinių gyvavimo ciklas / Sustainable lifecycle of the buildings | |
dc.title | Methods and criteria for evaluation of asphalt mixture resistance to low temperature cracking | |
dc.type | Straipsnis Web of Science DB / Article in Web of Science DB | |
dcterms.references | 65 | |
dc.type.pubtype | S1 - Straipsnis Web of Science DB / Web of Science DB article | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.faculty | Aplinkos inžinerijos fakultetas / Faculty of Environmental Engineering | |
dc.subject.researchfield | T 002 - Statybos inžinerija / Construction and engineering | |
dc.subject.ltspecializations | L104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies | |
dc.subject.en | Asphalt mixture | |
dc.subject.en | Critical cracking temperature | |
dc.subject.en | Fracture mechanics | |
dc.subject.en | Low temperature cracking | |
dc.subject.en | Spectral analysis of acoustic emission | |
dcterms.sourcetitle | The Baltic Journal of Road and Bridge Engineering | |
dc.description.issue | no. 2 | |
dc.description.volume | Vol. 12 | |
dc.publisher.name | Technika | |
dc.publisher.city | Vilnius | |
dc.identifier.doi | 000404322800008 | |
dc.identifier.doi | 2-s2.0-85022093867 | |
dc.identifier.doi | 10.3846/bjrbe.2017.16 | |
dc.identifier.elaba | 23019466 | |