dc.contributor.author | Andziulis, Arūnas | |
dc.contributor.author | Eglynas, Tomas | |
dc.contributor.author | Bogdevičius, Marijonas | |
dc.contributor.author | Lenkauskas, Tomas | |
dc.contributor.author | Jusis, Mindaugas | |
dc.date.accessioned | 2023-09-18T16:52:52Z | |
dc.date.available | 2023-09-18T16:52:52Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 2304-9693 | |
dc.identifier.other | (BIS)VGT02-000032227 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/117578 | |
dc.description.abstract | One of most important research area of our paper is development of adaptive container loading system w ith computer vision algorithms for smooth container lan ding on the platform (truck, trailer or well car of the train), whereas excessive vibration is caused at th at moment, this vibration and shocks can cause cont ainer and/or cargo damage. This paper presents container crane grabber adaptive positioning subsystem that uses computer vision algorithms. Designed subsystem consists of two separate parts: an automatic image recognition system and the adaptive control system, which is based on neural network with fuzzy interf ace. This network is using learning algorithms so it can easily control container crane motors and adapt to changing conditions (container weight, platform hei ght). Functional computer vision algorithms is prop osed and based on them computer programs was developed. Electric circuits is also created and described, th at allows testing and validation of this subsystem. | eng |
dc.format.extent | p. 21-28 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.rights | Laisvai prieinamas internete | |
dc.source.uri | https://talpykla.elaba.lt/elaba-fedora/objects/elaba:20309817/datastreams/MAIN/content | |
dc.subject | TD03 - Transporto sistemų ir eismo modeliavimas, optimizavimas, sauga ir valdymas / Transport systems and traffic modeling, optimization, safety and management | |
dc.title | Development of an adaptive intermodal container handling control subsystem based on automatic recognition algorithms | |
dc.type | Straipsnis kitame recenzuotame leidinyje / Article in other peer-reviewed source | |
dcterms.license | Creative Commons – Attribution – NonCommercial – 4.0 International | |
dcterms.references | 9 | |
dc.type.pubtype | S4 - Straipsnis kitame recenzuotame leidinyje / Article in other peer-reviewed publication | |
dc.contributor.institution | Klaipėdos universitetas | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas Klaipėdos universitetas | |
dc.contributor.faculty | Transporto inžinerijos fakultetas / Faculty of Transport Engineering | |
dc.contributor.faculty | Darbų ir civilinės saugos skyrius / Darbų ir civilinės saugos skyrius | |
dc.subject.researchfield | T 003 - Transporto inžinerija / Transport engineering | |
dc.subject.ltspecializations | L106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies | |
dc.subject.en | adaptive positioning | |
dc.subject.en | neural network | |
dc.subject.en | control system | |
dc.subject.en | intermodal containers | |
dc.subject.en | learning algorithms | |
dcterms.sourcetitle | European International Journal of Science and Technology (EIJST) | |
dc.description.issue | no. 3 | |
dc.description.volume | vol. 5 | |
dc.publisher.name | Center for Enhancing Knowledge | |
dc.publisher.city | Newcastel | |
dc.identifier.doi | 1 | |
dc.identifier.elaba | 20309817 | |