dc.contributor.author | Stankevičienė, Jelena | |
dc.contributor.author | Maknickienė, Nijolė | |
dc.contributor.author | Maknickas, Algirdas | |
dc.date.accessioned | 2023-09-18T16:53:28Z | |
dc.date.available | 2023-09-18T16:53:28Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 1392-2785 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/117797 | |
dc.description.abstract | Strategy of investment is important tool enabling better investor’s decisions in uncertain finance market. Rules of portfolio selection help investors balance accepting some risk for the expectation of higher returns. The aim of the research is to propose strategy of constructing investment portfolios based on the composition of distributions obtained by using high– low data. The ensemble of 176 Evolino recurrent neural networks (RNN) trained in parallel investigated as an artificial intelligence solution, which applied in forecasting of financial markets. Predictions made by this tool twice a day with different historical data give two distributions of expected values, which reflect future dynamic exchange rates. Constructing the portfolio, according to the shape, parameters of distribution and the current value of the exchange rate allows the optimization of trading in daily exchange-rate fluctuations. Comparison of a high-low portfolio with a close-to-close portfolio shows the efficiency of the new forecasting tool and new proposed trading strategy. | eng |
dc.format | PDF | |
dc.format.extent | p. 162-169 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | CEEOL – Central and Eastern European Online Library | |
dc.relation.isreferencedby | Business Source Complete | |
dc.relation.isreferencedby | Scopus | |
dc.relation.isreferencedby | Social Sciences Citation Index (Web of Science) | |
dc.source.uri | http://dx.doi.org/10.5755/j01.ee.28.2.15852 | |
dc.subject | VE - Technologijų vadyba ir ekonomika / Technology management and economics | |
dc.title | High-low strategy of portfolio composition using Evolino RNN ensembles | |
dc.type | Straipsnis Web of Science DB / Article in Web of Science DB | |
dcterms.references | 45 | |
dc.type.pubtype | S1 - Straipsnis Web of Science DB / Web of Science DB article | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.faculty | Verslo vadybos fakultetas / Faculty of Business Management | |
dc.contributor.faculty | Fundamentinių mokslų fakultetas / Faculty of Fundamental Sciences | |
dc.contributor.department | Finansų inžinerijos katedra / Department of Financial Engineering | |
dc.subject.researchfield | S 004 - Ekonomika / Economics | |
dc.subject.ltspecializations | L103 - Įtrauki ir kūrybinga visuomenė / Inclusive and creative society | |
dc.subject.en | Finance markets | |
dc.subject.en | Evolino, High-low strategy | |
dc.subject.en | Investment portfolio | |
dc.subject.en | Prediction. | |
dcterms.sourcetitle | Inžinerinė ekonomika = Engineering economics | |
dc.description.issue | no. 2 | |
dc.description.volume | Vol. 28 | |
dc.publisher.name | KTU | |
dc.publisher.city | Kaunas | |
dc.identifier.doi | 000402649600005 | |
dc.identifier.doi | 10.5755/j01.ee.28.2.15852 | |
dc.identifier.elaba | 22270180 | |