Show simple item record

dc.contributor.authorSavickas, Titas
dc.contributor.authorVasilecas, Olegas
dc.date.accessioned2023-09-18T16:59:31Z
dc.date.available2023-09-18T16:59:31Z
dc.date.issued2018
dc.identifier.issn0166-3615
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/118560
dc.description.abstractBusiness processes are a main part of any organization therefore it is essential to improve their execution. Analysis of real process data can provide useful insights. Process mining techniques can be applied to event logs containing data related to business process execution to discover business processes and their behaviour therefore improving decision support. This paper presents an approach to discover probabilistic belief network from event logs, which focuses on domain-specific data contained in the logs for the analysis of business process behaviour. For evaluation purposes, the approach is applied to predict the business process execution. Experiments presented in the paper showcase practical application of the approach for synthetic and real-life logs. Obtained results prove that the approach is suitable for follow-up activity prediction and the nature of the approach allows for it to be extended for other use cases, such as anomaly detection or business process simulation.eng
dc.formatPDF
dc.format.extentp. 258-266
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyInformation Science Abstracts
dc.relation.isreferencedbyComputer Abstracts International Database
dc.relation.isreferencedbyEngineering Index
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyScienceDirect
dc.relation.isreferencedbyCurrent Contents / Engineering, Computing & Technology
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.source.urihttps://doi.org/10.1016/j.compind.2018.04.020
dc.source.urihttps://www.sciencedirect.com/science/article/pii/S0166361517303135
dc.subjectIK01 - Informacinės technologijos, ontologinės ir telematikos sistemos / Information technologies, ontological and telematic systems
dc.titleBelief network discovery from event logs for business process analysis
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.accessRightsSeptember 2018
dcterms.references40
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.enBusiness process analysis
dc.subject.enProcess execution prediction
dc.subject.enProcess mining
dc.subject.enEvent log
dc.subject.enBelief network
dc.subject.enProbabilistic model
dcterms.sourcetitleComputers in industry
dc.description.volumeVol. 100
dc.publisher.nameElsevier
dc.publisher.cityAmsterdam
dc.identifier.doi2-s2.0-85047102571
dc.identifier.doi000438321700022
dc.identifier.doi10.1016/j.compind.2018.04.020
dc.identifier.elaba28803154


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record