Show simple item record

dc.contributor.authorAmiranashvi, Shalva
dc.contributor.authorRadžiūnas, Mindaugas
dc.contributor.authorBandelow, Uwe
dc.contributor.authorČiegis, Raimondas
dc.date.accessioned2023-09-18T17:20:52Z
dc.date.available2023-09-18T17:20:52Z
dc.date.issued2019
dc.identifier.issn1007-5704
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/121961
dc.description.abstractWe consider a one-dimensional first-order nonlinear wave equation, the so-called forward Maxwell equation (FME), which applies to a few-cycle optical pulse propagating along a preferred direction in a nonlinear medium, e.g., ultrashort pulses in nonlinear fibers. The model is a good approximation to the standard second-order wave equation under assumption of weak nonlinearity and spatial homogeneity in the propagation direction. We compare FME to the commonly accepted generalized nonlinear Schrödinger equation, which quantifies the envelope of a quickly oscillating wave field based on the slowly varying envelope approximation. In our numerical example, we demonstrate that FME, in contrast to the envelope model, reveals new spectral lines when applied to few-cycle pulses. We analyze and compare pseudo-spectral numerical schemes employing symmetric splitting for both models. Finally, we adopt these schemes to a parallel computation and discuss scalability of the parallelization.eng
dc.formatPDF
dc.format.extentp. 391-402
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyMathSciNet
dc.relation.isreferencedbyVINITI RAN
dc.relation.isreferencedbyEI Compendex Plus
dc.relation.isreferencedbyZentralblatt MATH (zbMATH)
dc.relation.isreferencedbyINSPEC
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyScienceDirect
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.source.urihttps://www.sciencedirect.com/science/article/pii/S100757041830251X?via%3Dihub
dc.source.urihttps://doi.org/10.1016/j.cnsns.2018.07.031
dc.titleNumerical methods for accurate description of ultrashort pulses in optical fibers
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.references44
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionWeierstrass Institute, Berlin
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.subject.researchfieldN 001 - Matematika / Mathematics
dc.subject.vgtuprioritizedfieldsFM0101 - Fizinių, technologinių ir ekonominių procesų matematiniai modeliai / Mathematical models of physical, technological and economic processes
dc.subject.ltspecializationsL104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies
dc.subject.enultrashort optical pulses
dc.subject.ennonlinear fibers
dc.subject.enforward Maxwell equation
dc.subject.engeneralized nonlinear Schrodinger equation
dc.subject.ensplitting method
dc.subject.enspectral method
dcterms.sourcetitleCommunications in nonlinear science and numerical simulation
dc.description.volumevol. 67
dc.publisher.nameElsevier
dc.publisher.cityAmsterdam
dc.identifier.doi2-s2.0-85051681721
dc.identifier.doi000445020100028
dc.identifier.doi10.1016/j.cnsns.2018.07.031
dc.identifier.elaba30345902


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record