| dc.contributor.author | Bačinskas, Darius | |
| dc.contributor.author | Rumšys, Deividas | |
| dc.contributor.author | Sokolov, Aleksandr | |
| dc.contributor.author | Kaklauskas, Gintaris | |
| dc.date.accessioned | 2023-09-18T17:26:12Z | |
| dc.date.available | 2023-09-18T17:26:12Z | |
| dc.date.issued | 2020 | |
| dc.identifier.issn | 1996-1944 | |
| dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/122954 | |
| dc.description.abstract | In the present trend of constructing taller and longer structures, the application of lightweight aggregate concrete is becoming an increasingly important advanced solution in the modern construction industry. In engineering practice, the analysis of lightweight concrete elements is performed using the same algorithms that are applied for normal concrete elements. As an alternative to traditional engineering methods, nonlinear numerical algorithms based on constitutive material models may be used. The paper presents a comparative analysis of curvature calculations for flexural lightweight concrete elements, incorporating analytical code methods EN 1992-1 and ACI 318-19, as well as a numerical analysis using the constitutive model of cracked tensile lightweight concrete recently proposed by the authors. To evaluate the adequacy of the theoretical predictions, experimental data of 51 lightweight concrete beams of five different programs reported in the literature were collected. A comparison of theoretical and experimental results showed that the most accurate predictions are obtained using numerical analysis and the constitutive model proposed by the authors. In the future, the latter algorithm can be used as a reliable tool for improving the design standard methods or numerical modeling of lightweight concrete elements subjected to short-term loading. | eng |
| dc.format | PDF | |
| dc.format.extent | p. 1-13 | |
| dc.format.medium | tekstas / txt | |
| dc.language.iso | eng | |
| dc.relation.isreferencedby | Science Citation Index Expanded (Web of Science) | |
| dc.relation.isreferencedby | Scopus | |
| dc.relation.isreferencedby | DOAJ | |
| dc.relation.isreferencedby | INSPEC | |
| dc.relation.isreferencedby | CAB Abstracts | |
| dc.relation.isreferencedby | Chemical abstracts | |
| dc.relation.isreferencedby | Genamics Journal Seek | |
| dc.relation.isreferencedby | PubMed | |
| dc.rights | Laisvai prieinamas internete | |
| dc.source.uri | https://doi.org/10.3390/ma13010020 | |
| dc.source.uri | https://talpykla.elaba.lt/elaba-fedora/objects/elaba:46547044/datastreams/MAIN/content | |
| dc.title | Deformation analysis of reinforced beams made of lightweight aggregate concrete | |
| dc.type | Straipsnis Web of Science DB / Article in Web of Science DB | |
| dcterms.accessRights | This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/) | |
| dcterms.license | Creative Commons – Attribution – 4.0 International | |
| dcterms.references | 39 | |
| dc.type.pubtype | S1 - Straipsnis Web of Science DB / Web of Science DB article | |
| dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
| dc.contributor.institution | UAB "SRP projektas" | |
| dc.contributor.faculty | Statybos fakultetas / Faculty of Civil Engineering | |
| dc.contributor.department | Statinių ir tiltų konstrukcijų institutas / Institute of Building and Bridge Structures | |
| dc.subject.researchfield | T 002 - Statybos inžinerija / Construction and engineering | |
| dc.subject.vgtuprioritizedfields | SD0101 - Pažangios statinių konstrukcijos / Smart building structures | |
| dc.subject.ltspecializations | L104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies | |
| dc.subject.ltspecializations | C101 - Civilinės inžinerijos mokslo centras / | |
| dc.subject.en | lightweight aggregate concrete | |
| dc.subject.en | reinforced concrete | |
| dc.subject.en | flexural elements | |
| dc.subject.en | curvature | |
| dc.subject.en | short-term loading | |
| dc.subject.en | tension stiffening | |
| dc.subject.en | constitutive model | |
| dc.subject.en | numerical modeling | |
| dcterms.sourcetitle | Materials: Special issue: Advances in lightweight aggregate concrete | |
| dc.description.issue | iss. 1 | |
| dc.description.volume | vol. 13 | |
| dc.publisher.name | MDPI | |
| dc.publisher.city | Basel | |
| dc.identifier.doi | 000515499300020 | |
| dc.identifier.doi | 10.3390/ma13010020 | |
| dc.identifier.elaba | 46547044 | |