Show simple item record

dc.contributor.authorRatautas, Dalius
dc.contributor.authorDagys, Marius
dc.date.accessioned2023-09-18T17:26:37Z
dc.date.available2023-09-18T17:26:37Z
dc.date.issued2020
dc.identifier.issn2073-4344
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/123124
dc.description.abstractDirect electron transfer (DET)-capable oxidoreductases are enzymes that have the ability to transfer/receive electrons directly to/from solid surfaces or nanomaterials, bypassing the need for an additional electron mediator. More than 100 enzymes are known to be capable of working in DET conditions; however, to this day, DET-capable enzymes have been mainly used in designing biofuel cells and biosensors. The rapid advance in (semi) conductive nanomaterial development provided new possibilities to create enzyme-nanoparticle catalysts utilizing properties of DET-capable enzymes and demonstrating catalytic processes never observed before. Briefly, such nanocatalysts combine several cathodic and anodic catalysis performing oxidoreductases into a single nanoparticle surface. Hereby, to the best of our knowledge, we present the first review concerning such nanocatalytic systems involving DET-capable oxidoreductases. We outlook the contemporary applications of DET-capable enzymes, present a principle of operation of nanocatalysts based on DET-capable oxidoreductases, provide a review of state-of-the-art (nano) catalytic systems that have been demonstrated using DET-capable oxidoreductases, and highlight common strategies and challenges that are usually associated with those type catalytic systems. Finally, we end this paper with the concluding discussion, where we present future perspectives and possible research directions.eng
dc.formatPDF
dc.format.extentp. 1-21
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyGenamics Journal Seek
dc.relation.isreferencedbyINSPEC
dc.relation.isreferencedbyDOAJ
dc.relation.isreferencedbyCAB Abstracts
dc.relation.isreferencedbyChemical abstracts
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.rightsLaisvai prieinamas internete
dc.source.urihttps://doi.org/10.3390/catal10010009
dc.source.urihttps://www.mdpi.com/2073-4344/10/1/9/htm
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:46557428/datastreams/MAIN/content
dc.titleNanocatalysts containing direct electron transfer-capable oxidoreductases: recent advances and applications
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.accessRightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
dcterms.references127
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus Gedimino technikos universitetas Vilniaus universitetas
dc.contributor.institutionVilniaus universitetas
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.subject.researchfieldN 004 - Biochemija / Biochemistry
dc.subject.researchfieldT 005 - Chemijos inžinerija / Chemical engineering
dc.subject.vgtuprioritizedfieldsFM0202 - Ląstelių ir jų biologiškai aktyvių komponentų tyrimai / Investigations on cells and their biologically active components
dc.subject.ltspecializationsL105 - Sveikatos technologijos ir biotechnologijos / Health technologies and biotechnologies
dc.subject.ennanocatalyst
dc.subject.ennanobiocatalysis
dc.subject.enbioelectrocatalysis
dc.subject.enoxidoreductase
dc.subject.endirect electron transfer
dc.subject.enbiofuel cell
dcterms.sourcetitleCatalysts
dc.description.issueiss. 1
dc.description.volumevol. 10
dc.publisher.nameMDPI
dc.publisher.cityBasel
dc.identifier.doi000516825000009
dc.identifier.doi10.3390/catal10010009
dc.identifier.elaba46557428


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record