Show simple item record

dc.contributor.authorKrylovas, Aleksandras
dc.contributor.authorKosareva, Natalja
dc.contributor.authorZavadskas, Edmundas Kazimieras
dc.date.accessioned2023-09-18T17:38:51Z
dc.date.available2023-09-18T17:38:51Z
dc.date.issued2018
dc.identifier.issn1841-9836
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/124731
dc.description.abstractIn this research 7 parametric classes of normalization functions depending on 1 or 2 parameters proposed for MCDM problem solution. Monte Carlo experiments carried out to perform comparative statistical analysis and find optimal parameter values for the case of Gaussian distribution of decision making matrix elements. Opti-mal parameter values were ascertained for each normalization method. Normalization formulas were compared with each other in the sense of their efficiency. Logarithmic and Max normalization formulas demonstrated highest values of the best alternative identification. The proposed methodology of determining optimal parameter values of normalization formulas could be applied by approximation of real data with appropriate probability distributions.eng
dc.formatPDF
dc.format.extentp. 972-987
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyDOAJ
dc.relation.isreferencedbyDOI
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.rightsLaisvai prieinamas internete
dc.source.urihttps://doi.org/10.15837/ijccc.2018.6.3398
dc.source.urihttp://univagora.ro/jour/index.php/ijccc/article/view/3398/pdf
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:32628212/datastreams/MAIN/content
dc.titleScheme for statistical analysis of some parametric normalization classes
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.accessRightsThis work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
dcterms.references20
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.contributor.facultyStatybos fakultetas / Faculty of Civil Engineering
dc.contributor.departmentTvariosios statybos institutas / Institute of Sustainable Construction
dc.subject.researchfieldN 001 - Matematika / Mathematics
dc.subject.researchfieldN 009 - Informatika / Computer science
dc.subject.vgtuprioritizedfieldsFM0101 - Fizinių, technologinių ir ekonominių procesų matematiniai modeliai / Mathematical models of physical, technological and economic processes
dc.subject.ltspecializationsL104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies
dc.subject.ennormalization methods
dc.subject.enmulti-criteria optimization
dc.subject.enMonte Carlo method
dc.subject.encomparative statistical analysis
dc.subject.enSAW
dcterms.sourcetitleInternational journal of computers, communications & control (IJCCC)
dc.description.issueiss. 6
dc.description.volumevol. 13
dc.publisher.nameAgora University
dc.publisher.cityOradia
dc.identifier.doi000451637900005
dc.identifier.doi2-s2.0-85058158284
dc.identifier.doi10.15837/ijccc.2018.6.3398
dc.identifier.elaba32628212


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record